THE LANCET Respiratory Medicine

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Boulos MI, Jairam T, Kendzerska T, Im J, Mekhael A, Murray BJ. Normal polysomnography parameters in healthy adults: a systematic review and meta-analysis. *Lancet Respir Med* 2019; published online April 18. http://dx.doi. org/10.1016/S2213-2600(19)30057-8.

SUPPLEMENTARY APPENDIX

Normal Polysomnography Parameters in Healthy Adults: A Systematic Review and Meta-

Analysis

Mark I. Boulos, MD; Trevor Jairam, BMSc; Tetyana Kendzerska, MD; James Im, BMSc; Anastasia Mekhael, BSc; Brian J. Murray, MD

1.	i. Prediction Intervals ii. Mixed Effects Models iii. Influence Analyses <u>Supplementary Tables</u>				
2.	<u>Supple</u> i.		<u>tary Tables</u> ble S1: Sample excluded health conditions and experimental treatments	6	
	ii.		ble S2: Quality Appraisal. Values are reported as number of subjects (% of al subjects in that row)	7	
	iii.	Ta A.	ble S3: Prediction Intervals Means and 95% prediction intervals for total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) for total sample and by age, sex and night of sleep study based on random effects models	8	
		B.	Means and 95% prediction intervals for sleep onset latency (SOL), REM latency (REML), and arousal index (AI) for total sample and by age, sex and night of sleep study based on random effects models.	9	
		C.	Means and 95% prediction intervals for duration of sleep stages (expressed as a percentage of total sleep time [%TST]) for total sample and by age, sex and night of sleep study based on random effects models	10	
		D.	Means and 95% prediction intervals for apnea-hypopnea index (AHI), mean and minimum arterial oxygen saturation (SaO2), and periodic limb movement index (PLMI) for total sample and by age, sex and night of sleep study based on random effects models.	11	
	iv.	Ta A.	ble S4: Mixed Effects Models The effect of age, sex and night of sleep study on total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) based on mixed effects models	12	
		B.	The effect of age, sex and night of sleep study on sleep onset latency (SOL), REM latency (REML), and arousal index (AI) based on mixed effects models.	13	
		C.	The effect age, sex and night of sleep study on duration of N1 and N2 sleep, as a percentage of total sleep time (%TST), based on mixed effects models.	14	
		D.	The effect of age, sex and night of sleep study on duration of N3 and REM sleep, as a percentage of total sleep time (%TST) based on mixed effects models.	15	
		E.	The effect of age and sex on apnea-hypopnea index (AHI) and mean arterial oxygen saturation (SaO2) based on mixed effects models.	16	

	F. The effect of age and sex on minimum arterial oxygen saturation (SaO2) and periodic limb movement index (PLMI) based on mixed effects models.	17
v.	 Table S5: Confidence Intervals Stratified by Two Moderators A. Mean and 95% confidence intervals for total sleep time (TST), sleep efficiency (SE), and duration of REM sleep as a percentage of total sleep time (%TST) stratified by night of sleep study and mean age based on random effects models. 	18
	B. Mean and 95% confidence intervals for REM latency (REML) stratified by night of sleep study and sex based on random effects models.	19
vi.	 Table S6: Prediction Intervals Stratified by Two Moderators A. Mean and 95% prediction intervals for total sleep time (TST), sleep efficiency (SE), and duration of REM sleep as a percentage of total sleep time (%TST) stratified by night of sleep study and mean age based on random effects models. 	20
	B. Mean and 95% prediction intervals for REM latency (REML) stratified by night of sleep study and sex based on random effects models.	21
vii.	Table S7: Changes in Sleep Parameters with Older Age Stratified by SexA. Change in sleep parameters (TST, SE, WASO) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95% CI reported are based on mixed-effects models.	22
	B. Change in sleep parameters (SOL, REML, AI) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95% CI reported are based on mixed-effects models.	23
	C. Change in sleep parameters (N1, N2, N3, REM) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95% CI reported are based on mixed-effects models.	24
	D. Change in sleep parameters (AHI, mean SaO2, minimum SaO2, PLMI) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95% CI reported are based on mixed-effects models	25
viii.	Table S8: Mixed effects models examining effect of age, sex, and night of sleep	
	study on sleep parameters, after controlling for quality-related variablesA. Mixed effects models examining effect of age, sex, and night of sleep study on total sleep time (TST), after controlling for quality-related variables.	26
	B. Mixed effects models examining effect of age, sex, and night of sleep study on sleep efficiency (SE), after controlling for quality-related variables.	26
	C. Mixed effects models examining effect of age, sex, and night of sleep study on wake after sleep onset (WASO), after controlling for quality-related variables.	27
	D. Mixed effects models examining effect of age, sex, and night of sleep study on sleep onset latency (SOL), after controlling for quality-related variables.	27
	E. Mixed effects models examining effect of age, sex, and night of sleep study on REM latency (REML), after controlling for quality-related variables.	28
	F. Mixed effects models examining effect of age, sex, and night of sleep study on arousal index (AI), after controlling for quality-related variables.	28

		G.	Mixed effects models examining effect of age, sex, and night of sleep study on duration of N1 sleep, as a percentage of total sleep time (%TST), after controlling for quality-related variables.	29
		H.	Mixed effects models examining effect of age, sex, and night of sleep study on duration of N2 sleep, as a percentage of total sleep time (%TST), after controlling for quality-related variables.	29
		I.	Mixed effects models examining effect of age, sex, and night of sleep study on duration of N3 sleep, as a percentage of total sleep time (%TST), after controlling for quality-related variables.	30
		J.	Mixed effects models examining effect of age, sex, and night of sleep study on duration of REM sleep, as a percentage of total sleep time (%TST), after controlling for quality-related variables.	30
		K.	Mixed effects models examining effect of age and sex on apnea-hypopnea index (AHI), after controlling for quality-related variables.	31
		L.	Mixed effects models examining effect of age and sex on mean arterial oxygen saturation (SaO2), after controlling for quality-related variables.	31
		M.	Mixed effects models examining effect of age and sex on minimum arterial oxygen saturation (SaO2), after controlling for quality-related variables.	32
		N.	Mixed effects models examining effect of age and sex on periodic limb movements index (PLMI), after controlling for quality-related variables.	32
	ix.	Tal	ble S9. Summary of findings for sleep parameters by age, sex, and night of the	33
		slee	p study	
3.	Supple			
3.	<u>Supple</u> i.	<u>ment</u> Fig	EXAMPLE 1 Figures ary Figures ure S1: Forest plots showing the effect of sex on REM latency (REML) Forest plot showing the effect of sex on REM latency (REML) for control groups assessed on the first night in the sleep laboratory.	34
3.		<u>ment</u> Fig A.	ary Figures ure S1: Forest plots showing the effect of sex on REM latency (REML) Forest plot showing the effect of sex on REM latency (REML) for control groups	34 35
3.		<u>ment</u> Fig A. B.	 ary Figures ure S1: Forest plots showing the effect of sex on REM latency (REML) Forest plot showing the effect of sex on REM latency (REML) for control groups assessed on the first night in the sleep laboratory. Forest plot showing the effect of sex on REML for control groups assessed on the second night or later in the sleep laboratory. ure S2: Forest plots showing the effect of sex on mean arterial oxygen 	-
3.	i.	ment Fig A. B. Fig	ary Figures ure S1: Forest plots showing the effect of sex on REM latency (REML) Forest plot showing the effect of sex on REM latency (REML) for control groups assessed on the first night in the sleep laboratory. Forest plot showing the effect of sex on REML for control groups assessed on the second night or later in the sleep laboratory.	-
3.	i.	ment Fig A. B. Fig satt A.	 Forest plots showing the effect of sex on REM latency (REML) Forest plot showing the effect of sex on REM latency (REML) for control groups assessed on the first night in the sleep laboratory. Forest plot showing the effect of sex on REML for control groups assessed on the second night or later in the sleep laboratory. ure S2: Forest plots showing the effect of sex on mean arterial oxygen uration (SaO2) Forest plot showing the effect of sex on mean arterial oxygen saturation (SaO2) 	35
3.	i.	ment Fig A. B. Fig satu A. B.	 ary Figures ure S1: Forest plots showing the effect of sex on REM latency (REML) Forest plot showing the effect of sex on REM latency (REML) for control groups assessed on the first night in the sleep laboratory. Forest plot showing the effect of sex on REML for control groups assessed on the second night or later in the sleep laboratory. ure S2: Forest plots showing the effect of sex on mean arterial oxygen uration (SaO2) Forest plot showing the effect of sex on mean arterial oxygen saturation (SaO2) Forest plot showing the effect of sex on mean arterial oxygen saturation (SaO2) Forest plot showing the effect of sex on mean arterial oxygen saturation (SaO2) 	35 36
3.	i.	ment Fig A. B. Fig satu A. B. C.	 ary Figures ure S1: Forest plots showing the effect of sex on REM latency (REML) Forest plot showing the effect of sex on REM latency (REML) for control groups assessed on the first night in the sleep laboratory. Forest plot showing the effect of sex on REML for control groups assessed on the second night or later in the sleep laboratory. ure S2: Forest plots showing the effect of sex on mean arterial oxygen artion (SaO2) Forest plot showing the effect of sex on mean arterial oxygen saturation (SaO2) for control groups with a mean age of 18–34 years. Forest plot showing the effect of sex on mean SaO2 for control groups with a mean age of 34–49 years. 	35 36 37

with a mean age of 18–34 years.

- B. Forest plot showing the effect of sex on AI for control groups with a mean age of 40 35–49 years.
- C. Forest plot showing the effect of sex on AI for control groups with a mean age of 41 50–64 years.
- D. Forest plot showing the effect of sex on AI for control groups with a mean age of 41 65+ years.

iv. Figure S4: Forest plots showing the effect of sex on apnea-hypopnea index (AHI)

- A. Forest plot showing the effect of sex on apnea-hypopnea index (AHI) for control 42 groups with a mean age of 18–34 years.
 - B. Forest plot showing the effect of sex on AHI for control groups with a mean age 43 of 35–49 years.

4. Table S10: Characteristics of studies included in meta-analysis.44-60

5. References for Supplementary Appendix 61-68

1. METHODOLOGICAL DETAILS

1.1 Prediction Intervals

To address heterogeneity in sleep parameters unexplained by mean age, sex, and night of sleep study, 95% Higgins-Thompson-Spiegelhalter prediction intervals (PIs) were computed based on a Students *t*-distribution with k-2 degrees of freedom (*k* representing the number of studies or in this meta-analysis, the number of healthy control groups).¹ We chose the Higgins PI because a t-distribution has been recommended to reduce the effect of outlying studies.¹ This interval is wider than that which would be seen with a confidence interval and provides information about individual values within a random effects distribution. Confidence intervals, in contrast, strictly provide information about the mean of a random effects distribution.

The width of the Higgins-Thompson-Spiegelhalter PI is proportional to the square root of the sum of the betweenstudy variance (tau²) and square of the standard error of the pooled estimate.¹ Its validity strongly depends upon approximation of a large sample² and needs to be interpreted with caution when the number of studies is less than 20. Estimates with 95% PIs are presented below (Tables S3A-D and S6A-B).

1.2 Mixed Effects Models

Most mixed effects meta-regression models were multivariate, consisting of mean age, % male participants, and night of sleep study (first night vs. second night or later). Because most studies reporting AHI, mean SaO₂, minimum SaO₂, and PLMI were performed for a single night in the sleep laboratory, only mean age and percentage of male participants were included in these models. In addition, univariate models were also created for percentage of N1 and N2 because of non–significant omnibus tests in the multivariate models for these parameters. Finally, as mean AHI varied substantially above a mean age of 50 years and the mixed effect model was not robust, an alternative model was created exclusively for control groups with a mean age of less than 50 years.

Model coefficients provided a means of quantifying the degree to which each moderator was associated with changes in a given sleep parameter while controlling for other moderators. Omnibus tests of all model coefficients were based on a χ^2 distribution with *m* degrees of freedom (*m* being the number of coefficients) and *Q* statistics were computed.³ For individual model coefficients, tests of significance were based on the normal distribution and *z* scores were computed.³ The amount of heterogeneity accounted by the moderators (R²) was also calculated for each mixed effect model.

A secondary analysis was also performed to assess whether age-related changes in sleep parameters differed between males and females. For this analysis, control groups were stratified by sex (total, male only, and female only) and the influence of mean age was analyzed independently within each subgroup using univariate mixed effects models.

1.3 Influence Analyses

To identify particularly influential studies included in our random effects and mixed effects models, the following diagnostic values were examined: DFFITS (Difference in fits) values, Cook's distance, hat values, and DFBETAS. Influential studies were identified as studies meeting at least one of the following cut-offs defined in the "metafor" package:³ absolute DFFITS value larger than $3\sqrt{(p/(k-p))}$, where *p* is the number of model coefficients and *k* is the number of studies; lower tail area of a chi-square distribution with *p* degrees of freedom cut off by Cook's distance larger than 50%; hat value larger than 3(p/k); or any DFBETAS value larger than 1. For any attempts to stabilize models, a maximum of four studies were removed. A robust model was defined as one without any overly influential studies.

SUPPLEMENTARY TABLES

Main confound	Examples
Health conditions	Cardiovascular/hematological disorders and risk factors
	- Heart failure
	- Obesity (defined as mean body mass index (BMI) > 30 kg/m ²)
	- Sickle cell disease
	Endocrine disorders
	- Acromegaly
	Infectious diseases
	- Tonsillitis
	Neurological conditions
	- Alzheimer's disease
	- Amyotrophic lateral sclerosis (ALS)
	- Epilepsy
	- Huntington's disease
	- Parkinson's disease
	Pulmonary disorders
	- Chronic obstructive pulmonary disease (COPD)
	Psychological conditions
	- Anxiety
	- Depression
	- Post-traumatic stress disorder
	Pregnancy
	Sleep disorders
	- Insomnia
	- Narcolepsy
	- Rapid eye movement (REM) sleep behavior disorder
	- Restless legs syndrome
	- Sleep apnea
Experimental treatments	- Drugs other than placebo
•	- Hot temperatures
	- Hypoxic conditions
	- Significant noise
	- Split sleep schedules

Table S1. Sample excluded health conditions and experimental treatments

	Total	Exclusion criteria stated for sleep complaints and/or disorders*	Exclusion criteria stated for medical disorders†	Exclusion criteria stated for psychiatric disorders‡	Recruited from population-based studies
Total sample	5273	3030 (57·5%)	2331 (44·2%)	1985 (37·5%)	1230 (23·3%)
	k = 202	k = 124	k = 101	k = 75	k = 29
Sample characteristic					
Mean age, years	2139	1555 (72·7%)	1006 (47·0%)	814 (38·1%)	380 (17·8%)
18–34	k = 88	k = 70	k = 55	k = 39	k = 7
35–49	1268	566 (44·6%)	568 (44·8%)	442 (34·9%)	373 (29·4%)
	k =48	k = 28	k = 25	k = 20	k = 6
50-64	$1353 \\ k = 41$	744 (55·0%) k = 17	643 (47·5%) k = 14	604 (44.6%) k = 9	314 (23·2%) k = 7
65-79	408	93 (22·8%)	29 (7·1%)	63 (15.4%)	153 (37·5%)
	k =18	k = 5	k = 2	k = 4	k = 8
80+	10	0 (0.0%)	0 (0.0%)	0 (0.0%)	10 (100·0%)
	k = 1	k = 0	k = 0	k = 0	k = 1
Sex					
Both	3417	2446 (71·6%)	1822 (53·3%)	1619 (47.4%)	150 (4·4%)
	k = 136	k = 95	k = 75	k = 61	k = 2
Males only	939	389 (41·4%)	258 (27·5%)	221 (23·5%)	506 (53·9%)
	k = 38	k = 19	k = 14	k = 7	k = 15
Females only	816	148 (18·1%)	185 (22·7%)	105 (12·9%)	574 (70·3%)
	k = 23	k = 7	k = 9	k = 5	k = 12
Night of sleep study	3053	1199 (39·3%)	1137 (37·2%)	712 (23·3%)	1230 (40·3%)
First night	k = 116	k = 57	k = 52	k = 33	k = 29
Second night or later	1192	1012 (84·9%)	578 (48·5%)	604 (50.7%)	0 (0.0%)
	k = 54	k = 45	k = 32	k = 30	k = 0

Table S2. Quality Appraisal	. Values are reported as number	r of subjects (% of total subjects in that row)
-----------------------------	---------------------------------	---

*A study would meet our criteria for explicitly excluding subjects with sleep complaints and/or disorders if: (a) included subjects were explicitly screened using standardized questionnaires (e.g. Pittsburgh sleep quality index, Epworth sleep sleepiness), (b) included subjects were explicitly screened using a diagnostic overnight PSG, or (c) subjects with sleep complaints and/or disorders were stated to be excluded.

[†]A study would meet our criteria for explicitly excluding subjects with medical disorders if: (a) included subjects were explicitly screened for medical illnesses (e.g. clinical examination, laboratory tests, etc.) or (b) subjects with medical illnesses were stated to be excluded.

‡A study would meet our criteria for explicitly excluding subjects with psychiatric disorders if: (a) included subjects were screened using standardized procedures (e.g. structured clinical interview for DSM-V [SCID]) or (b) subjects with psychiatric disorders were stated to be excluded. Note: Excluding only one type of psychiatric disorder (e.g. anxiety) would not suffice.

	TST, minutes	SE, %	WASO, minutes
Total sample	394·6 (319·8-469·3)	85.7 (75.1-96.3)	48·2 (7·1-89·3)
i ouii suiiipie	k = 158	k = 147	k = 94
	n = 4038	n = 4217	n = 2757
	$I^2 = 98 \cdot 3\%$	$I^2 = 94.0\%$	$I^2 = 94 \cdot 8$
Sample characteristic			
Mean age, years			
18–34	410.6 (360.8-460-3)	89.0 (81.6-96.4)	32.1 (8.3-55.9)
	k = 76	k = 65	k = 42
	n = 1815	n = 1635	n = 1226
35-49	386.6 (298.2-475.0)	85.4 (75.6-95.2)	51.1 (2.2-100.0)
	k = 32	k = 35	k = 22
	n = 955	n = 1040	n = 728
50-64	372.0 (301.0-442.9)	83.2 (71.6-94.9)	64.0 (26.7-101.3)
	k = 26	k = 27	k = 17
	n = 712	n = 1099	n = 547
65-79	346.0 (262.8-429.3)	77.5 (58.3-96.6)	77.1 (-1.4-155.6)
	k = 17	k = 16	k = 12
	n = 399	n = 386	n = 185
80+	-	-	-
Sex			
Both	405.2 (343.4-467.0)	86.7 (76.2-97.1)	43.3 (3.6-83.1)
	k = 101	k = 96	k = 56
	n = 2286	n = 2695	n = 1494
Males only	374.6 (277.0-472.2)	84.3 (72.3-96.3)	51.8 (7.0-96.5)
-	k = 30	k = 27	k = 20
	n = 786	n = 678	n = 587
Females only	356.0 (269.2-442.9)	84.1 (72.9-95.3)	55.0 (18.0-92.0)
	k = 19	k = 20	k = 17
	n = 748	n = 768	n = 668
Night of sleep study			
First night	371.7 (281.8-461.3)	84.2 (73.7-94.6)	52.7 (8.3-97.1)
	k = 89	k = 88	k = 57
	n = 2447	n = 2491	n = 1895
Second night or later	419.7 (368.1-471.4)	89.3 (81.9-96.6)	37.9 (0.0-75.7)
-	k = 48	k = 39	k = 26
	n = 1092	n = 942	n = 674

Table S3A. Means and 95% prediction intervals* for total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) for total sample and by age, sex and night of sleep study based on random effects models.

Note: "k" represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. "n" represents the total number of individuals included.

			A. T
Total sample	SOL, minutes 15.4 (3.2-27.6) k = 124	REML, minutes 97·4 (70·9-123·8) k = 89	AI, events/h 12·6 (6·1-19·1) k = 89
	n = 3828 $I^2 = 91.9$	n = 2859 $I^2 = 81.6$	n = 2847 $I^2 = 94.2$
Sample characteristic			
Mean age, years			
18–34	14.3 (2.1-26.5) k = 58 n = 1517	96.4 (65.5-127.3) k = 42 n = 1195	9.6 (5.2-14.1) k = 32 n = 984
35-49	14.4 (4.5-24.3) k = 25 n = 856	93.4 (77.5-109.4) k = 18 n = 644	12.5 (3.3-21.6) k = 25 n = 827
5064	15.7 (7.5-24.0) k = 19 n = 930	$101 \cdot 3 (73 \cdot 2 - 129 \cdot 3)$ k = 14 n = 702	16.5 (10.0-23.1) k = 19 n = 800
65-79	19.5 (3.2-35.9) k = 16 n = 340	99.7 (55.2-144.2) k = 11 n = 243	-
80+	n – 340 -		-
Sex			
Both	15.4 (2.2-28.6) k = 76 n = 2301	96.7 ($80.2-113.3$) k = 44 n = 1369	11.3 (4.3-18.3) k = 47 n = 1424
Males only	14.7 (8.3-21.1) k = 25 n = 647	92.5 (64.1-121.0) k = 24 n = 687	14.5 (6.3-22.8) k = 20 n = 573
Females only	13.5 (7.5-19.4) k = 20 n = 768	99.5 ($86.6-112.5$) k = 20 n = 768	12·7 (6·1-19·3) k = 15 n = 596
Night of sleep study			
First night	14.7 (5.0-24.4) k = 68 n = 2048	99.5 (83.9-115.0) k = 49 n = 1487	13.5 (6.1-21.0) k = 62 n = 1751
Second night or later	$ \begin{array}{c} 14.4 (2.4-26.3) \\ k = 41 \\ n = 966 \end{array} $	87.3 (65.9-108.7) k = 28 n = 510	9.6 (3.5-15.7) k = 14 n = 435

Table S3B. Means and 95% prediction intervals* for sleep onset latency (SOL), REM latency (REML), and arousal index (AI) for total sample and by age, sex and night of sleep study based on random effects models.

Note: "k" represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. "n" represents the total number of individuals included.

Total sample	N1, %TST 7.9 (2.1-13.7) k = 104 n = 2940 $l^2 = 95.4$	N2, %TST 51.4 (39.7-63.2) k = 104 n = 2940 $l^2 = 93.2$	N3, %TST 20.4 (6.4.34.4) k = 107 n = 2995 $l^2 = 96.5$	REM, %TST 19.0 (13.7-24.4) k = 108 n = 3012 $I^2 = 87.7$
Sample characteristic				
Mean age, years 18–34	$6 \cdot 0 (1 \cdot 8 - 10 \cdot 2)$ k = 38 n = 871	$51 \cdot 3 (41 \cdot 3 - 61 \cdot 2)$ k = 39 n = 886	21.4 (12.7-30.2) k = 42 n = 937	19.8 (13.7-26.0) k = 44 n = 958
35-49	$8 \cdot 0 (2 \cdot 4 - 13 \cdot 6)$ k = 23 n = 750	$52 \cdot 2 (44 \cdot 7 - 59 \cdot 7)$ k = 24 n = 794	20.4 (11.5-29.2) k = 23 n = 774	19.3 (14.2-24.3) k = 24 n = 776
50-64	8.7 (2.3-15.1) k = 22 n = 876	$52 \cdot 8 (38 \cdot 1 - 67 \cdot 5)$ k = 22 n = 876	18.1 (2.5-33.7) k = 23 n = 896	18·7 (14·6-22·7) k = 23 n = 896
65-79	9.3 (0.7-17.9) k = 11 n = 256	$53 \cdot 3 (41 \cdot 7 - 65 \cdot 0)$ k = 11 n = 256	19.9 (13.1-26.8) k = 11 n = 256	17.7 (16.7-18.7) k = 10 n = 221
80+	-	-	-	-
Sex				
Both	9.7 (2.7-16.6) k = 59 n = 1533	50.6 (36.0-65.2) k = 59 n = 1533	19.5 (4.3-34.6) k = 62 n = 1588	19.2 (14.1-24.3) k = 63 n = 1576
Males only	$5 \cdot 3 (1 \cdot 5 - 9 \cdot 1)$ k = 23 n = 609	$52 \cdot 1 (43 \cdot 2 - 60 \cdot 9)$ k = 24 n = 617	$21 \cdot 0 (14 \cdot 0 - 27 \cdot 9)$ k = 24 n = 617	19.9 (13.3-26.4) k = 24 n = 627
Females only	$4 \cdot 2 (1 \cdot 9 - 6 \cdot 4)$ k = 16 n = 662	$55 \cdot 1 (51 \cdot 0 - 59 \cdot 2)$ k = 16 n = 688	22.1 (16.9-27.3) k = 17 n = 708	18.6 (16.0-21.2) k = 17 n = 708
Night of sleep study First night	$7 \cdot 0 (2 \cdot 9 - 11 \cdot 1)$ k = 63 n = 1734	$52 \cdot 1 (42 \cdot 4 - 61 \cdot 8)$ k = 69 n = 1916	20.7 (12.4-29.0) k = 69 n = 1907	18.3 (14.6-21.9) k = 68 n = 1870
Second night or later	$6 \cdot 9 (0 \cdot 4 - 13 \cdot 5)$ k = 23 n = 426	48.2 (35.5-60.9) k = 24 n = 457	$22 \cdot 3 (1 \cdot 9 - 42 \cdot 8)$ k = 25 n = 469	$21 \cdot 4 (14 \cdot 5 - 28 \cdot 2)$ k = 26 n = 476

Table S3C. Means and 95% prediction intervals* for duration of sleep stages (expressed as a percentage of total sleep time [%TST]) for total sample and by age, sex and night of sleep study based on random effects models.

Note: "k" represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. "n" represents the total number of individuals included.

Total sample	AHI, events/h $2 \cdot 9 (0 \cdot 7 - 5 \cdot 0)$ k = 99 n = 3229 $I^2 = 95 \cdot 7$	$\begin{array}{c} \text{Mean SaO}_{2}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} \textbf{Minimum SaO_2, \%} \\ 89.2 \ (84.3-94.1) \\ k = 58 \\ n = 2004 \\ I^2 = 97.9 \end{array}$	PLMI, events/h $2 \cdot 5 (0 \cdot 6 - 4 \cdot 4)$ k = 58 n = 2198 $I^2 = 90 \cdot 2$
Sample characteristic				
Mean age, years 18–34	1.6 (-0.2-3.4) k = 28 n = 1039	$96 \cdot 2 (95 \cdot 0 - 97 \cdot 4)$ k = 15 n = 540	91.8 (91.3-92.3) k = 17 n = 569	$ \begin{array}{l} 1.1 & (-0.2 - 2.4) \\ k = 11 \\ n = 411 \end{array} $
35-49	3.1 (0.2-6.0) k = 28 n = 836	95·3 (93·3-97·3) k = 13 n = 532	90.5 (84.8-96.2) k = 19 n = 622	3.1 (-0.9-7.0) k = 14 n = 600
50-64	$4 \cdot 2 (1 \cdot 5 - 6 \cdot 8)$ k = 28 n = 1054	94.3 (93.0-95.7) k = 11 n = 292	87.0 (78.1-95.9) k = 12 n = 648	$6 \cdot 2(-0 \cdot 8 - 13 \cdot 2)$ k = 13 n = 628
65-79	15.5 (9.8-21.3) k = 10 n = 211	-	-	-
80+	- 211	-	-	-
Sex				
Both	$2 \cdot 2 (0 \cdot 2 - 4 \cdot 2)$ k = 54 n = 1698	$95 \cdot 4 (93 \cdot 0 - 97 \cdot 7)$ k = 14 n = 324	91.7 (88.3-95.0) k = 21 n = 746	$4 \cdot 4 (0 \cdot 3 - 8 \cdot 5)$ k = 26 n = 981
Males only	$5 \cdot 2 (1 \cdot 4 - 8 \cdot 9)$ k = 23 n = 673	94.7 (92.9-96.5) k = 18 n = 566	87.9 (82.0-93.7) k = 19 n = 586	$2 \cdot 1 (-0 \cdot 5 - 4 \cdot 7)$ k = 16 n = 439
Females only	$3 \cdot 1 (0 \cdot 6 - 5 \cdot 6)$ k = 16 n = 668	95.0 (92.7-97.4) k = 14 n = 605	87.6 (81.0-94.2) k = 14 n = 605	$2 \cdot 1 (0 \cdot 1 - 4 \cdot 1)$ k = 15 n = 659
Night of sleep study First night	3.4 (1.0-5.8) k = 72 n = 2184	95.0 (92.9-97.1) k = 40 n = 1392	89.0 (83.3-94.6) k = 49 n = 1518	$2 \cdot 2 (0 \cdot 6 - 3 \cdot 9)$ k = 45 n = 1507
Second night or later	-	-	-	-

Table S3D. Means and 95% prediction intervals* for apnea-hypopnea index (AHI), mean and minimum arterial oxygen saturation (SaO₂), and periodic limb movement index (PLMI) for total sample and by age, sex and night of sleep study based on random effects models.

Note: "k" represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. "n" represents the total number of individuals included.

		Mixed effect model		
		Estimate	95% Cl	р
TST, minutes $k = 128$	Omnibus test			<·0001
$R^2 = 70.67$	(Intercept)	414.06	$339{\cdot}1-429{\cdot}0$	<·0001
	Mean age, years	-1.01	-1.280.75	<·0001
	Sex, % male	0.03	-0.10 - 0.16	·66
	Night of sleep study (second night or later)	38.30	$29{\cdot}44-47{\cdot}16$	<·0001
SE, % k = 122	Omnibus test			<·0001
$R^{2} = 29.48$	(Intercept)	93.92	90.97 - 96.87	<·0001
	Mean age, years	-0.21	-0.260.15	<·0001
	Sex, % male	-0.01	-0.04 - 0.01	·30
	Night of sleep study (second night or later)	2.65	$0{\cdot}86-4{\cdot}44$	0.0037
WASO, minutes k = 82	Omnibus test			<·0001
$R = 82$ $R^2 = 24.07$	(Intercept)	11.44	$-3 \cdot 33 - 26 \cdot 21$	·13
	Mean age, years	0.97	0.69 - 1.24	<·0001
	Sex, % male	0.00	-0.12 - 0.12	·94
	Night of sleep study (second night or later)	-5.59	-14.92 - 3.75	·24

Table S4A. The effect of age, sex and night of sleep study on total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) based on mixed effects models.

		Mixed effect model		
		Estimate	95% Cl	р
SOL, min k = 107 $R^2 = 30.98$	Omnibus test (Intercept)	9.87	5.62-14.12	·026 <·0001
	Mean age, years	0.11	$0{\cdot}03-0{\cdot}19$	·0051
	Sex, % male	0.02	-0.02 - 0.05	·34
	Night of sleep study (second night or later)	-0.12	-2.70 - 2.41	·91
REML, min k = 75	Omnibus test			·00031
$R^2 = 39.52$	(Intercept)	104.55	92.96 - 116.15	<·0001
	Mean age, years	0.01	-0.22 - 0.25	·90
	Sex, % male	-0.09	-0.160.01	·027
	Night of sleep study (second night or later)	-11.14	-17.874.42	·0012
AI, events/h k = 73	Omnibus test			<·0001
$R^2 = 0.00$	(Intercept)	3.58	-0.66 - 6.50	·016
	Mean age, years	0.21	$0{\cdot}15-0{\cdot}26$	<·0001
	Sex, % male	0.03	$0{\cdot}00-0{\cdot}05$	·029
<u> </u>	Night of sleep study (second night or later) ndicate $p \le 0.05$	-1.60	-3.87 - 0.68	·17

Table S4B. The effect of age, sex and night of sleep study on sleep onset latency (SOL), REM latency (REML), and arousal index (AI) based on mixed effects models.

		Mixed effects model 1 Multivariate (age, sex, night of study)		Univariate	ects model 2 e* or night of st	udy)	
		Estimate	Cl	р	Estimate	Cl	р
N1, %TST	Omnibus test			·05			·0018
Model 1	(Intercept)	4.95	3.04 -	<·0001	5.05	3.51 -	<.0001
k = 82			6.86			6.58	
$R^2 = 4.30$							
	Mean age, years	0.05	0.01 -	·0069	0.02	0.02 -	·0018
Model 2			0.08			0.09	
k = 84	Sex, % male	0.00	-0.01 -	0.57			
$R^2 = 10.83$,		0.02				
	Night of sleep study (second	0.68	-0.70 -	0.34			
	night or later)		2.05				
N2, %TST	Omnibus test			·07			·0051
Model 1	(Intercept)	52.6	48.86 -	<·0001	52.08	50.82 -	<.0001
k = 84	(56.32			53.34	
$R^2 = 2.79$							
	Mean age, years	0.00	-0.06 -	.90			
Model 2			0.02				
k = 91			5 67				
$R^2 = 7.59$	Sex, % male	-0.01	-0.04 -	·71			
	2011, / 0 111110		0.03	· •			
			0.05				
	Night of sleep study (second	-3.44	-6.18 -	·014	-3.66	- 6·23 –	·0051
	night or later)	5	-0.70		2 00	-1.10	0001

Table S4C. The effect age, sex and night of sleep study on duration of N1 and N2 sleep, as a percentage of total sleep time (%TST), based on mixed effects models.

*Univariate models (incorporating only age or night of study) were created for percentage of N1 and N2 because of non-significant omnibus tests in the multivariate models for these parameters, which indicated statistically insignificant multivariate models.

		Mixed effect me	odel	
		Estimate	95% Cl	р
N3, %TST k = 85	Omnibus test			-15
$R^2 = 6.09$	(Intercept)	23.75	20.40 - 27.10	<·0001
	Mean age, years	-0.06	-0.12 - 0.01	·08
	Sex, % male	-0.02	-0.04 - 0.01	·30
	Night of sleep study (second night or later)	0.74	-1.74 - 3.22	·56
REM, % k = 88	Omnibus test			<.0001
$R^2 = 38.99$	(Intercept)	18.68	$17{\cdot}02-20{\cdot}34$	<·0001
	Mean age, years	-0.03	-0.06 - 0.00	·08
	Sex, % male	0.01	$0{\cdot}00-0{\cdot}03$	·11
	Night of sleep study (second night or later)	3.52	2.32 - 4.72	<·0001

Table S4D. The effect of age, sex and night of sleep study on duration of N3 and REM sleep, as a percentage of total sleep time (%TST) based on mixed effects models.

		Mixed effect	model		Mixed effect		
		All ages			Mean age < .	50 years*	
		Estimate	95% Cl	р	Estimate	95% Cl	р
AHI, events/h	Omnibus test			<·0001			<·0001
Model 1 k = 93 R ² = 0.00	(Intercept)	-2.61	3.68 -1.53	<·0001	-1.74	-3·11 - -0·37	·013
Model 2	Mean age, years	0.12	0.09-0.14	<·0001	0.09	0.05 - 0.13	<·0001
	Sex, % male	0.02	$0{\cdot}01-0{\cdot}03$	·00043	0.02	$\begin{array}{cc} 0.01 & - \\ 0.03 & \end{array}$	·00030
Mean SaO ₂ , %	Omnibus test			<·0001			
$k = 46$ $R^2 = 83.17$	(Intercept)	98.16	97·69 – 98·64	<·0001			
	Mean age, years	-0.06	-0·07 0·05	<·0001			
	Sex, % male	-0.01	-0.01 - 0.00	·0017			

Table S4E. The effect of age and sex on apnea-hypopnea index (AHI) and mean arterial oxygen saturation (SaO₂) based on mixed effects models.

*As the mean AHI varied substantially above a mean age of 50 years and the mixed effect model was not robust, an alternative model was created exclusively for control groups with a mean age of less than 50 years.

		Mixed effect	model	
Minimum SaO ₂ , %	Omnibus test	Estimate	95% Cl	р <·0001
k = 53 $R^2 = 0.00$	(Intercept)	97.60	$94{\cdot}92-100{\cdot}27$	<·0001
	Mean age, years	-0.18	-0.230.13	<·0001
	Sex, % male	-0.01	-0.03 - 0.01	·54
PLMI, events/h $k = 50$	Omnibus test (Intercept)	-1.88	-3.80 - 0.02	<∙0001 ∙06
$R^2 = 13.21$	(intercept)	-1'88	-5.80 - 0.02	100
	Mean age, years	0.12	0.08 - 0.16	<·0001
	Sex, % male	0.00	-0.01 - 0.01	·96

Table S4F. The effect of age and sex on minimum arterial oxygen saturation (SaO₂) and periodic limb movement index (PLMI) based on mixed effects models.

Night of sleep study and mean age, years First night	TST, minutes	SE, %
18–34	393·4 (380·0–406·9) k = 33 n = 878	87.4 (86.4-88.3) k = 31 n = 843
35–49	$369 \cdot 8 (351 \cdot 5 - 388 \cdot 2)$ k = 21 n = 685	84·6 (82·3–86·9) k = 25 n = 780
50-64	$366 \cdot 6 (348 \cdot 0 - 385 \cdot 3)$ k = 19 n = 544	83.1 (80.2-86.1) k = 18 n = 551
65-79	331.9 (311.6-352.2) k = 13 n = 303	75.3 (72.0–78.7) k = 12 n = 290
80+	198.6 (142.5-254.7) k = 1 n = 10	45·7 (33·7-57·7) k = 1 n =10
Second night or later		
18–34	$429 \cdot 6 (423 \cdot 5 - 435 \cdot 7)$ k = 31 n = 681	90·5 (89·1–91·9) k = 27 n = 625
35–49	419.6 (399.6–439.6) k = 7 n = 197	88·3 (86·1–90·5) k = 6 n = 187
50-64	$398 \cdot 2 (392 \cdot 5 - 403 \cdot 9)$ k = 4 n = 88	84.1 (81.9-86.3) k = 3 n = 63
65-79	380.5 (364.9-396.0) k = 3 n = 66	$81 \cdot 2 (76 \cdot 2 - 86 \cdot 3)$ k = 3 n = 66
80+	-	-

Table S5A. Mean and 95% confidence interval for total sleep time (TST), sleep efficiency (SE), and duration of REM sleep as a percentage of total sleep time (%TST) stratified by night of sleep study and mean age based on random effects models.

Note: "k" represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. "n" represents the total number of individuals included.

Table S5B. Mean and 95% confidence interval for REM latency (REML) stratified by night of sleep study and sex based on random effects models.

Night of sleep study and sex First night	REML, minutes
Females only	$102 \cdot 7 (98 \cdot 0 - 107 \cdot 5)$ k = 15 n = 642
Males only	96.0 (91.4-100.6) k = 17 n = 542
Second night or later	
Females only	89.8 (83.6-96.0) k = 5 n = 126
Males only	$78 \cdot 3 (69 \cdot 0 - 87 \cdot 6)$ k = 6 n = 66

Note: "k" represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. "n" represents the total number of individuals included.

Night of sleep study and mean age, years First night	TST, minutes	SE, %
18–34	$393 \cdot 4 (316 \cdot 3 - 470 \cdot 6)$ k = 33 n = 878	87.4 (83.3-91.5) k = 31 n = 843
35-49	$369 \cdot 8 (281 \cdot 4 - 458 \cdot 2)$ k = 21 n = 685	84.6 (72.8-96.3) k = 25 n = 780
50-64	366.6 (281.1-452.1) k = 19 n = 544	83.1 (70.0-96.3) k = 18 n = 551
65-79	$331 \cdot 9 (254 \cdot 7 - 409 \cdot 0)$ k = 13 n = 303	75.3 (63.5-87.2) k = 12 n = 290
80+	-	-
Second night or later		
18–34	429.6 (398.8-460.4) k = 31 n = 681	90.5 ($83.5-97.5$) k = 27 n = 625
35-49	-	-
50–64	-	-
65-79	-	-
80+	-	-

Table S6A. Mean and 95% prediction interval for total sleep time (TST), sleep efficiency (SE), and duration of REM sleep as a percentage of total sleep time (%TST) stratified by night of sleep study and mean age based on random effects models.

Note: "k" represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. "n" represents the total number of individuals included.

*Higgins 95% prediction intervals were calculated based on a t-distribution with k-2 degrees of freedom.¹ The validity of this metric strongly depends upon approximation using a large sample size and needs to be interpreted with caution when k<20. We do not report data where k<10.

Table S6B. Mean and 95% prediction interval* for REM latency (REML) stratified by night of sleep study and sex based on random effects models.

Night of sleep study and sex	REML, minutes
First night Females only	102.7 (91.3-114.1) k = 15 n = 642
Males only	96.0 (86.0-106.0) k = 17 n = 542
Second night or later Females only	-
Males only	-

Note: "k" represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. "n" represents the total number of individuals included.

*Higgins 95% prediction intervals were calculated based on a t-distribution with k-2 degrees of freedom.¹ The validity of this metric strongly depends upon approximation using a large sample size and needs to be interpreted with caution when k<20. We do not report data where k<10.

		TST, minutes	SE, %	WASO, minutes
35-49 vs 18-34	Total	-17·5 (-30·6 to -4·4) †	-3·5 (-5·6 to -1·5) *	17·2 (6·9 to 27·5) †
	Male	-61·1 (-95·3 to -26·9) *	-7·8 (-12·3 to -3·3) *	30·4 (12·8 to 48·0) *
	Female	-26·6 (-61·9 to 8·8)	-2·7 (-7·1 to 1·7)	20·2 (9·3 to 31·0) *
50-64-vs 18-34	Total	-35·2 (-49·5 to -20·9) *	-5·6 (-7·9 to -3·4) *	30·4 (18·9 to 41·8) *
	Male	-84·5 (-122·8 to -46·3) *	-10.6 (-15.7 to -5.5) *	40·8 (21·3 to 60·4) *
	Female	-62·4 (-100·7 to -24·0) †	-8·5 (-13·3 to -3·7) *	30·4 (19·6 to 41·2) *
65-79- vs 18-34	Total	-64·5 (-82·0 to -47·0) *	-10·7 (-13·7 to -7·8) *	41·1 (27·8 to 54·4) *
	Male	-86·1 (-124·9 to -47·2) *	-16·5 (-22·2 to -10·7) *	64·2 (42·5 to 85·9) *
	Female	-98·1 (-142·4 to -53·8) *	-17·0 (-23·2 to -10·7) *	52·3 (37·0 to 67·6) *
80+ vs 18-34 §	Male	-208.9 (-290.8 to -127.1) *	-43·0 (-57·0 to -28·9) *	-
	Female	-	-	-

Table S7A. Change in sleep parameters (TST, SE, WASO) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95% CI reported are based on mixed-effects models.

*indicates p < 0.0001

† indicates p < 0.001

‡ indicates p <0.01

§ Only one study (n = 10 males) examined participants with a mean age greater than 80 years.

TST, total sleep time; SE, sleep efficiency; WASO, wake after sleep onset

		SOL, minutes	REML, minutes	AI, events/h
35-49 vs 18-34	Total	1·1 (-2·0 to 4·7)	-1·1 (-9·8 to 7·6)	$2.4 (0.7 \text{ to } 4.1) \dagger$
	Male	-0·1 (-6·6 to 6·4)	3.6 (-13.6 to 20.9)	5·0 (1·7 to 8·3) †
	Female	-0·5 (-3·3 to 4·2)	-5·1 (-15·7 to 5·5)	3.6 (1.3 to 6.0) †
50-64 vs 18-34	Total	2·3 (-0·9 to 5·6)	5·2 (-5·1 to 15·5)	6·6 (4·6 to 8·5) *
	Male	-0·4 (-7·0 to 6·2)	12.8 (-7.6 to 33.2)	12·2 (7·8 to 16·7) *
	Female	4·9 (0·5 to 9·3) ‡	5·1 (-8·0 to 18·1)	9·5 (6·4 to 12·6) *
65-79 vs 18-34	Total	5.0 (1.0 to 9.0) ‡	8·3 (-3·9 to 20·4)	8·3 (5·5 to 11·1) *
	Male	2·7 (-5·7 to 11·0)	12.5 (-11.3 to 36.4)	12·8 (8·2 to 17·4) *
	Female	12·1 (3·6 to 20·7) †	8.0 (-10.5 to 26.5)	9·2 (5·5 to 12·9) *
80+ vs 18-34 §	Male	25.5 (-3.2 to 54.3)	93·6 (25·5 to 161·7) †	20·9 (4·0 to 37·8) ‡
	Female	-	-	-

Table S7B. Change in sleep parameters (SOL, REML, AI) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95% CI reported are based on mixed-effects models.

*indicates p < 0.0001

† indicates p < 0.001

 \ddagger indicates p <0.01

§ Only one study (n = 10 males) examined participants with a mean age greater than 80 years.

SOL, sleep onset latency; REML, rapid eye movement sleep latency; AI, arousal index

		N1, %TST	N2, %TST	N3, %TST	REM, %TST
35-49 vs 18-34	Total	$2.2 (0.8 \text{ to } 3.7) \dagger$	0.9 (-2.0 to 3.8)	-2·2 (-5·5 to 1·1)	-0.9 (-2.3 to 0.5)
	Male	-0.6 (-3.2 to 2.0)	4·2 (-2·4 to 10·8)	-2·1 (-8·4 to 4·1)	-0.9 (-5.0 to 3.2)
	Female	1·4 (-0·01 to 2·8).	-1·9 (-4·7 to 0·9)	-0·3 (-3·4 to 2·9)	0.6 (-0.7 to 2.0)
50-64-vs 18-34	Total	2.0 (0.5 to 3.6) †	2·1 (-0·9 to 5·1)	-3·9 (-7·2 to -0·6) *	-1·2 (-2·7 to 0·3)
	Male	-0.01 (-2.7 to 2.7)	6·6 (-0·2 to 13·3)	-3·4 (-9·7 to 3·0)	-2·7 (-7·0 to 1·5)
	Female	0·9 (-0·6 to 2·3)	1·1 (-2·0 to 4·2)	-1.0 (-4.4 to 2.3)	-1·1 (-2·6 to 0·5)
65-79 vs 18-34	Total	2·5 (0·6 to 4·5) ‡	2.6 (-1.4 to 6.6)	-2·1 (-6·5 to 2·4)	-2·7 (-4·8 to -0·7) †
	Male	3·0 (-0·6 to 4·6)	2·7 (-4·1 to 9·5)	-4.0 (-10·2 to 2·2)	-2·3 (-6·3 to 1·7)
	Female	1·3 (-0·3 to 3·0)	0·9 (-3·1 to 4·9)	0·4 (-3·8 to 4·6)	-2·8 (-4·8 to -0·8) †
80+ vs 18-34 §	Male	22·0 (8·8 to 35·1) †	-6·5 (-18·4 to 5·3)	-3.8 (-18.5 to 10.8)	-11·1 (-19·5 to -2·7) †
	Female	-	-	-	-

Table S7C. Change in sleep parameters (N1, N2, N3, REM) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95% CI reported are based on mixed-effects models.

*indicates p < 0.0001

† indicates p < 0.001

‡ indicates p <0.01

§ Only one study (n = 10 males) examined participants with a mean age greater than 80 years.

N1, stage N1 sleep; N2, stage N2 sleep; N3, stage N3 sleep; REM, rapid eye movement sleep

		AHI, events/h	Mean SaO ₂ , %	Minimum SaO ₂ , %	PLMI, events/h
35-49 vs 18-34	Total	1·3 (0·6 to 2·0) *	-0·9 (-1·4 to -0·4) †	-1·1 (-2·7 to 0·5)	1.9 (0.7 to 3.0) †
	Male	1·7 (-0·3 to 3·6)	-1·3 (-1·9 to -0·7) *	-4·4 (-6·1 to -2·8) *	1.2 (-0.2 to 2.6)
	Female	$2.4 (0.8 \text{ to } 4.0) \ddagger$	-0·9 (-1·4 to -0·4) *	-2·6 (-4·0 to -1·2) *	3·4 (1·7 to 5·1) *
50-64-vs 18-34	Total	2·4 (1·6 to 3·1) *	-1·9 (-2·4 to -1·3) *	-4·4 (-6·2 to -2·5) *	4·0 (2·7 to 5·3) *
	Male	8·4 (5·5 to 11·4) *	-1·7 (-2·4 to -1·1) *	-5·9 (-8·1 to -3·8) *	7·1 (4·0 to 10·3) *
	Female	3·4 (1·6 to 5·2) *	-2·2 (-2·7 to -1·7) *	-6·8 (-8·2 to -5·4) *	2·7 (1·0 to 4·4) †
65-79 vs 18-34	Total	13·7 (11·4 to 16·1) *	-2·9 (-3·5 to -2·2) *	-8·4 (-10·6 to -6·1) *	6·4 (4·2 to 8·6) *
	Male	16·2 (10·7 to 21·8) *	-2·4 (-3·2 to -1·6) *	-6·6 (-8·7 to -4·5) *	15·4 (7·7 to 23·1) *
	Female	14·8 (10·8 to 18·8) *	-3·6 (-4·3 to -2·9) *	-9·3 (-11·4 to -7·3) *	3·9 (1·3 to 6·5) †
80+ vs 18-34 §	Male	27.6 (9.2 to 45.9) †	-1·7 (-3·6 to 0·2)	-3·3 (-7·7 to 1·2)	13·7 (4·8 to 22·6) †
	Female	-	-	-	-

Table S7D. Change in sleep parameters (AHI, mean SaO2, minimum SaO2, PLMI) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95% CI reported are based on mixed-effects models.

*indicates p < 0.0001

† indicates p < 0.001

‡ indicates p <0.01

§ Only one study (n = 10 males) examined participants with a mean age greater than 80 years.

AHI, apnea-hypopnea index; mean SaO2, mean oxygen saturation; minimum SaO2, oxygen saturation; PLMI, periodic limb movement index

Table S8A. Mixed effects models examining effect of age, sex, and night of sleep study on total sleep time (TST), after controlling for quality-related variables.

	Mean age, years		Sex, % male	Sex, % male		Night of sleep study (second night or later)	
	Estimate (95% CI)	р	Estimate (95% CI)	р	Estimate (95% CI)	р	
Tri-variate mixed effects model with mean age, sex, and night of sleep study	-1.01 (-1.28 to -0.75)	<·0001	0.03 (1.28 to -0.75)	·66	38·3 (29·4 to 47·2)	<·0001	
Quality-related variable added to model							
Exclusion criteria stated for sleep complaints and/or disorders	-0.74 (-1.00 to -0.50)	<·0001	0.08 (-0.04 to 0.20)	·21	29·1 (20·7 to 37·6)	<·0001	
Exclusion criteria stated for medical disorders	-0·79 (-1·09 to -0·48)	<·0001	0.05 (-0.09 to 0.19)	·46	36·4 (26·8 to 45·9)	<·0001	
Exclusion criteria stated for psychiatric disorders	-0.94 (-1.19 to -0.70)	<.0001	0.09 (-0.03 to 0.21)	·15	32·0 (23·5 to 40·5)	<·0001	
Recruited from population-based studies	-0.83 (-1.08 to -0.58)	<·0001	0.03 (-0.09 to 0.15)	·57	24·2 (15·4 to 32·9)	<·0001	

Table S8B. Mixed effects models examining effect of age, sex, and night of sleep study on sleep efficiency (SE), after controlling for quality-related variables.

	Mean age, years		Sex, % male	Sex, % male		r)
	Estimate (95% CI)	р	Estimate (95% CI)	р	Estimate (95% CI)	р
Tri-variate mixed effects model with mean age, sex, and night of sleep study	-0·21 (-0·26 to -0·15)	<·0001	-0.01 (-0.04 to 0.01)	·30	2.65 (0.76 to 4.44)	·0037
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	-0.19 (-0.5 to -0.14)	<·0001	-0.01 (-0.04 to 0.01)	·38	2·15 (0·34 to 3·96)	·020
Exclusion criteria stated for medical disorders	-0·18 (-0·23 to -0·13)	<.0001	-0.01 (-0.04 to 0.01)	·32	2.60 (0.92 to 4.28)	·0024
Exclusion criteria stated for psychiatric disorders	-0·20 (-0·25 to -0·15)	<.0001	-0.01 (-0.03 to 0.02)	·46	2·23 (0·47 to 3·98)	0.013
Recruited from population-based studies	-0·19 (-0·24 to -0·14)	<·0001	-0.01 (-0.04 to 0.01)	·21	1.28 (-0.45 to 3.00)	·15

Table S8C. Mixed effects models examining effect of age, sex, and night of sleep study on wake after sleep onset (WASO), after controlling for quality-related variables.

	Mean age, years		Sex, % male		Night of sleep study (second night or later)	
	Estimate (95% CI)	р	Estimate (95% CI)	р	Estimate (95% CI)	р
Tri-variate mixed effects model with mean age, sex, and night of sleep study	0.97 (0.69 to 1.24)	<·0001	0.00 (-0.11 to 0.12)	·94	-5.58 (-14.92 to 3.75)	·24
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	0.88 (0.62 to 1.14)	<·0001	0.00 (-0.11 to 0.10)	·97	-2·22 (-10·93 to 6·48)	·62
Exclusion criteria stated for medical disorders	0.90 (0.63 to 1.17)	<·0001	0.00 (-0.11 to 0.11)	1.00	-4·54 (-13·4 to 4·33)	·32
Exclusion criteria stated for psychiatric disorders	0·94 (0·65 to 1·23)	<·0001	0.00 (-0.12 to 0.12)	·98	-5.00 (-14.6 to 4.60)	·31
Recruited from population-based studies	0.87 (0.63 to 1.11)	<·0001	0.00 (-0.10 to 0.10)	·96	0.07 (-8.44 to 8.59)	·99

Table S8D. Mixed effects models examining effect of age, sex, and night of sleep study on sleep onset latency (SOL), after controlling for quality-related variables.

	Mean age, years		Sex, % male	Sex, % male		r (second r)
	Estimate (95% CI)	р	Estimate (95% CI)	р	Estimate (95% CI)	р
Tri-variate mixed effects model with mean age, sex, and night of sleep study	0.11 (0.03 to 0.19)	0.0051	0.02 (-0.02 to 0.05)	0.34	-0.15 (-2.70 to 2.41)	0.91
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	0.11 (0.03 to 0.19)	0.0064	0.02 (-0.02 to 0.05)	0.34	-0.17 (-2.82 to 2.49)	0.90
Exclusion criteria stated for medical disorders	0·11 (0·02 to 0·19)	0.011	0.02 (-0.02 to 0.05)	0.36	-0.09 (-2.69 to 2.51)	0.95
Exclusion criteria stated for psychiatric disorders	0·10 (0·03 to 0·18)	0.0093	0.01 (-0.02 to 0.05)	0.44	0.07 (-2.54 to 2.69)	0.96
Recruited from population-based studies	0·10 (0·03 to 0·18)	0.0081	0.02 (-0.02 to 0.05)	0.33	0.78 (-1.95 to 3.51)	0.58

Table S8E. Mixed effects models examining effect of age, sex, and night of sleep study on REM latency
(REML), after controlling for quality-related variables.

	Mean age, years		Sex, % male	Sex, % male		Night of sleep study (second night or later)	
	Estimate (95% CI)	р	Estimate (95% CI)	р	Estimate (95% CI)	р	
Tri-variate mixed effects model with mean age, sex, and night of sleep study	0.02 (-0.22 to 0.25)	.90	-0.09 (-0.16 to -0.01)	·027	-11·14 (-17·87 to -4·42)	·0012	
Quality-related variable added to model							
Exclusion criteria stated for sleep complaints and/or disorders	0.02 (-0.22 to 0.26)	·88	-0.09 (-0.16 to -0.01)	·030	-11·33 (-18·72 to -3·94)	·0026	
Exclusion criteria stated for medical disorders	-0.02 (-0.24 to 0.22)	·91	-0.09 (-0.17 to -0.02)	·016	-9·96 (-16·7 to -3·24)	·0037	
Exclusion criteria stated for psychiatric disorders	0.02 (-0.22 to 0.26)	·87	-0.08 (-0.16 to 0.00)	·042	-11.71 (-18.89 to -4.53)	·0014	
Recruited from population-based studies	0.01 (-0.22 to 0.25)	·90	-0.09 (-0.16 to -0.01)	·027	-10.69 (-19.82 to -2.56)	·010	

Table S8F. Mixed effects models examining effect of age, sex, and night of sleep study on arousal index (AI), after controlling for quality-related variables.

	Mean age, years		Sex, % mal	Sex, % male		Night of sleep study (second night or later)	
	Estimate (95% CI)	р	Estimate (95% CI)	р	Estimate (95% CI)	р	
Tri-variate mixed effects model with mean age, sex, and night of sleep study	-0·21 (0·15 to 0·26)	<·0001	0.03 (0.00 to 0.05)	·029	-1.60 (-3.87 to 0.68)	·17	
Quality-related variable added to model							
Exclusion criteria stated for sleep complaints and/or disorders	0·20 (0·14 to 0·26)	<·0001	0.03 (0.00 to 0.05)	·031	-1·46 (-3·95 to 1·03)	·25	
Exclusion criteria stated for medical disorders	0.19 (0.13 to 0.25)	<·0001	0.03 (0.00 to 0.05)	·026	-1.58 (-3.85 to 0.69)	·17	
Exclusion criteria stated for psychiatric disorders	0·20 (0·14 to 0·26)	<·0001	0.02 (0.00 to 0.05)	·042	-1·29 (-3·64 to 1·06)	·28	
Recruited from population-based studies	0·20 (0·14 to 0·25)	<·0001	0.03 (0.00 to 0.05)	·022	-0·74 (-3·15 to 1·68)	·55	

Table S8G. Mixed effects models examining effect of age, sex, and night of sleep study on duration of N1 sleep, as a percentage of total sleep time (%TST), after controlling for quality-related variables.

	Mean age, years		Sex, % male		Night of sleep study (second night or later)	
	Estimate (95% CI)	р	Estimate (95% CI)	р	Estimate (95% CI)	р
Tri-variate mixed effects model with mean age, sex, and night of sleep study	0.05 (0.01 to 0.08)	·0069	0.00 (-0.01 to 0.02)	·57	0.68 (-0.70 to 2.05)	·34
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	0.07 (0.03 to 0.11)	·00015	0.01 (-0.01 to 0.02)	·44	-0·27 (-1·71 to 1·16)	·71
Exclusion criteria stated for medical disorders	0.07 (0.03 to 0.10)	·00051	0.01 (-0.01 to 0.02)	·48	0.38 (-1.01 to 1.78)	•59
Exclusion criteria stated for psychiatric disorders	0.06 (0.03 to 010)	·00023	0.01 (-0.01 to 0.02)	·22	0.14 (-1.15 to 1.43)	·83
Recruited from population-based studies	0.07 (0.03 to 0.10)	·00016	0.01 (-0.01 to 0.02)	·37	-1·15 (-2·54 to 0·25)	·11

Table S8H. Mixed effects models examining effect of age, sex, and night of sleep study on duration of N2 sleep, as a percentage of total sleep time (%TST), after controlling for quality-related variables.

	Mean age, years		Sex, % male	,	Night of sleep study (second night or later)	
	Estimate (95% CI)	р	Estimate (95% CI)	р	Estimate (95% CI)	р
Tri-variate mixed effects model with mean age, sex, and night of sleep study	0.00 (-0.06 to 0.07)	·90	-0.01 (-0.04 to 0.03)	·71	-3·44 (-6·18 to -0·70)	·014
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	-0.01 (-0.08 to 0.07)	·86	-0.01 (-0.04 to 0.02)	·67	-2·95 (-5·85 to -0·06)	·046
Exclusion criteria stated for medical disorders	0.00 (-0.08 to 0.07)	·94	-0.01 (-0.04 to 0.03)	·70	-3·38 (-6·15 to -0·60)	·017
Exclusion criteria stated for psychiatric disorders	0.01 (-0.07 to 0.08)	·87	-0.01 (-0.04 to 0.03)	·72	-3·47 (-6·26 to -0·68)	·015
Recruited from population-based studies	-0.01 (-0.07 to 0.06)	·88	-0.01 (-0.04 to 0.02)	·65	-2·37 (-5·29 to 0·56)	·11

Table S8I. Mixed effects models examining effect of age, sex, and night of sleep study on duration of N3 sleep, as a percentage of total sleep time (%TST), after controlling for quality-related variables.

	Mean age, years		Sex, % male		Night of sleep study (second night or later)	
	Estimate (95% CI)	р	Estimate (95% CI)	р	Estimate (95% CI)	р
Tri-variate mixed effects model with mean age, sex, and night of sleep study	-0.06 (-0.12 to 0.01)	·08	-0.01 (-0.04 to 0.01)	·30	0.74 (-1.74 to 3.22)	·56
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	-0.08 (-0.14 to -0.01)	·020	-0.02 (-0.05 to 0.01)	·25	1.50 (-1.06 to 4.10)	·25
Exclusion criteria stated for medical disorders	-0.08 (-0.14 to -0.01)	·016	0.02 (-0.04 to 0.01)	·27	0.96 (-1.44 to 3.36)	·43
Exclusion criteria stated for psychiatric disorders	-0.07 (-0.13 to -0.01)	·034	-0.02 (-0.05 to 0.01)	·24	-0.91 (156 to 3.38)	·57
Recruited from population-based studies	-0.07 (-0.13 to -0.01)	·029	-0.02 (-0.04 to 0.01)	·25	1.70 (-0.83 to 4.23)	·19

Table S8J. Mixed effects models examining effect of age, sex, and night of sleep study on duration of REM sleep, as a percentage of total sleep time (%TST), after controlling for quality-related variables.

	Mean age, years		Sex, % male		Night of sleep study (second night or later)	
	Estimate (95% CI)	р	Estimate (95% CI)	р	Estimate (95% CI)	р
Tri-variate mixed effects model with mean age, sex, and night of sleep study	-0.03 (-0.06 to 0.00)	·08	-0.01 (0.00 to 0.03)	·11	3.52 (2.32 to 4.72)	<·0001
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	-0.03 (-0.06 to 0.00)	·10	0.01 (0.00 to 0.03)	·12	3.53 (2.23 to 4.81)	<·0001
Exclusion criteria stated for medical disorders	-0.02 (-0.05 to 0.01)	·20	0.01 (0.00 to 0.03)	·12	3·43 (2·21 to 4·65)	<·0001
Exclusion criteria stated for psychiatric disorders	-0.03 (-0.06 to 0.00)	·07	0.01 (0.00 to 0.03)	·12	3.55 (2.34 to 4.76)	<·0001
Recruited from population-based studies	-0.03 (-0.06 to 0.00)	·046	0.01 (0.00 to 0.02)	·12	3·92 (2·66 to 5·19)	<·0001

Table S8K. Mixed effects models examining effect of age and sex on apnea-hypopnea index (AHI), after controlling for quality-related variables.

	Mean age, yea	ars	Sex, % male			
	Estimate (95% CI)	р	Estimate (95% CI)	р		
Bivariate mixed effects model with mean age and sex	0·12 (0·09 to 0·14)	<·0001	0.02 (0.01 to 0.03)	·00043		
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	0.11 (0.09 to 0.14)	<·0001	0.02 (0.01 to 0.03)	<·0001		
Exclusion criteria stated for medical disorders	0.12 (0.09 to 0.14)	<·0001	0.02 (0.01 to 0.03)	<·0001		
Exclusion criteria stated for psychiatric disorders	0.12 (0.09 to 0.14)	<·0001	0.02 (0.01 to 0.03)	·00022		
Recruited from population-based studies	0·13 (0·11 to 0·15)	<·0001	0.02 (0.02 to 0.03)	<·0001		

Table S8L. Mixed effects models examining effect of age and sex on mean arterial oxygen saturation (SaO2), after controlling for quality-related variables.

	Mean age, years		Sex, % male	
	Estimate (95% CI)	р	Estimate (95% CI)	р
Bivariate mixed effects model with mean age and sex	-0.06 (-0.07 to -0.05)	<·0001	-0.01 (-0.01 to 0.00)	·0017
Quality-related variable added to model				
Exclusion criteria stated for sleep complaints and/or disorders	-0.06 (-0.07 to -0.05)	<·0001	-0.01 (-0.01 to 0.00)	·0017
Exclusion criteria stated for medical disorders	-0.06 (-0.07 to -0.05)	<·0001	-0.01 (-0.01 to 0.00)	·0011
Exclusion criteria stated for psychiatric disorders	-0.06 (-0.07 to -0.05)	<·0001	-0.01 (-0.01 to 0.00)	·00071
Recruited from population-based studies	-0.06 (-0.07 to -0.05)	<.0001	-0.01 (-0.01 to 0.00)	·00080

Table S8M. Mixed effects models examining effect of age and sex on minimum arterial oxygen saturation (SaO2), after controlling for quality-related variables.

	Mean age, years		Sex, % male		
	Estimate (95% CI)	р	Estimate (95% CI)	р	
Bivariate mixed effects model with mean age and sex	-0.18 (-0.23 to 0.13)	<·0001	-0.01 (-0.03 to 0.01)	·54	
Quality-related variable added to model					
Exclusion criteria stated for sleep complaints and/or disorders	-0·17 (-0·23 to -0·12)	<·0001	-0.01 (-0.03 to 0.01)	·52	
Exclusion criteria stated for medical disorders	-0·17 (-0·21 to -0·13)	<·0001	-0.01 (-0.02 to 0.01)	·32	
Exclusion criteria stated for psychiatric disorders	-0·19 (-0·24 to -0·13)	<·0001	-0.01 (-0.03 to 0.02)	·55	
Recruited from population-based studies	-0·17 (-0·21 to -0·13)	<·0001	-0.01 (-0.02 to 0.01)	·31	

Table S8N. Mixed effects models examining effect of age and sex on periodic limb movements index (PLMI), after controlling for quality-related variables.

	Mean age, years		Sex, % male		
	Estimate (95% CI)	р	Estimate (95% CI)	р	
Bivariate mixed effects model with mean age and sex	0.12 (0.08 to 0.16)	<·0001	0.00 (-0.01 to 0.01)	·96	
Quality-related variable added to model					
Exclusion criteria stated for sleep complaints and/or disorders	0.12 (0.08 to 0.16)	<·0001	0.00 (-0.01 to 0.01)	·96	
Exclusion criteria stated for medical disorders	0.12 (0.08 to 0.16)	<·0001	0.00 (-0.01 to 0.01)	·98	
Exclusion criteria stated for psychiatric disorders	0.12 (0.08 to 0.16)	<·0001	0.00 (-0.01 to 0.01)	·97	
Recruited from population-based studies	0.13 (0.09 to 0.17)	<·0001	0.00 (-0.01 to 0.02)	·88	

	Change per 10 years of ageing	Change for every 10% increase in percentage of male participants	Change when sleep study was done on second or later night compared with first night	Appendix table reporting normative data as prediction intervals
Total sleep time, min	-10·1 (-12·8 to -7·5); p<0·0001	0·3 (-1·0 to 1·6); p=0·66	38·3 (29·4 to 47·2); p<0·0001	Table 3A*, p 8
Sleep efficiency	-2·1% (-2·6 to -1·5); p<0·0001	-0·1% (-0·4 to 0·1); p=0·30	2·7% (0·9 to 4·4); p=0·0037	Table 3A*, p 8
Wake after sleep onset, min	9·7 (6·9 to 12·4); p<0·0001	0·0 (-1·2 to 1·2); p=0·94	-5.6 (-14.9 to 3.8); p=0.24	Table 3A, p 8
Sleep onset latency, min	1·1 (0·3 to 1·9); p=0·0051	0·2 (-0·2 to 0·5); p=0·34	-0·2 (-2·7 to 2·4); p=0·91	Table 3B, p 9
REM latency, min	0·1 (-2·2 to 2·5); p=0·90	-0·9 (-1·6 to -0·1); p=0·027	-11·1 (-17·9 to -4·4); p=0·0012	Table 3B [†] , p 9
Arousal index, events per h	2·1 (1·5 to 2·6); p<0·0001	0·3 (0·0 to 0·5); p=0·029	-1.6 (-3.9 to 0.7); p=0.17	Table 3B‡, p 9
Percentage of time total sleep time in sleep				
stages N1	0·5% (0·1 to 0·8); p=0·0069	0·0% (-0·1 to 0·2); p=0·57	0·7% (-0·7 to 2·1); p=0·34	Table 3C, p 10
N2	0.0 (-0.6 to 0.7); p=0.90	-0·1% (-0·4 to 0·3); p=0·71	-3·7% (-6·2 to -1·1); p=0·0051	Table 3C, p 10
N3	-0.6 (-1.2 to 0.1); p=0.08	-0·2% (-0·4 to 0·1); p=0·30	0.7% (-1.7 to 3.2); p=0.56	Table 3C, p 10
REM	-0·3 (-0·6 to 0·0); p=0·08	0·1% (0·0 to 0·3); p=0·11	3·5% (2·3 to 4·7); p<0·0001	Table 3C, p 10
AHI, events per h	1·2 (0·9 to 1·4); p<0·0001	0·2 (0·1 to 0·3); p=0·00043		Table 3D‡, p 11
Mean SaO ₂	-0.6% (-0.7 to -0.5); p<0.0001	-0·1% (-0·1 to 0·0); p=0·0017		Table 3D‡, p 11
Minimum SaO ₂	-1·8% (-2·3 to -1·3); p<0·0001	-0·1% (-0·3 to 0·1); p=0·54		Table 3D, p 11
PLMI, events per h	1·2 (0·8 to 1·6); p<0·0001	0·0 (-0·1 to 0·1); p=0·96		Table 3D, p 11

Table S9. Summary of findings for sleep parameters by age, sex, and night of the sleep study

Note: Mixed effects coefficients are reported as estimate (95% CI); p value. Bold values are statistically significant. Because most studies reporting AHI, mean and minimum SaO2, and PLMI were first-night studies, only mean age and percentage of male participants were included in mixed-effects models. SaO2=arterial oxygen saturation. AHI=apnea-hypopnea index. PLMI=periodic limb movement index.

*See Table 6A (p 20) for data stratified by age and night of sleep study.

[†]See Table 6B (p 21) for data stratified by sex and night of sleep study.

‡Due to low number of studies reporting male and female parameters separately, normative data stratified by age and sex was not tabulated.

SUPPLEMENTARY FIGURES

Figure S1A. Forest plot showing the effect of sex on REM latency (REML) for control groups assessed on the first night in the sleep laboratory. Control groups are divided into three subgroups: female, mixed (sorted by % male), and male. The mean REML for each control group is represented by a square (size proportional to random effects weight), and the 95% confidence interval (CI) by the horizontal line passing through. Pooled REML estimates are represented by diamonds (width indicating associated 95% CI). A dashed vertical line is positioned at the total pooled REML estimate.

А

Mean REML, min

Figure S1B. Forest plot showing the effect of sex on REML for control groups assessed on the second night or later in the sleep laboratory. Legend is as for Fig S1A.

B

First Author (subgroup), Year	% Male					Mean REML [95% C
Female control groups			-			
de Zambotti M et al., 2015	0		•			86.10 [66.36, 105.84]
Dubrovsky B et al., 2014	0					88.60 [73.54, 103.66]
Baker FC et al., 2015	0					89.20 [80.23, 98.17]
Biard K et al., 2015	0					92.20 [76.79, 107.61]
de Zambotti M et al., 2012	0			•		95.00 [74.25, 115.75]
Random effects model for subgroup						89.80 [83.59, 96.01]
Heterogeneity: I-squared=0.0%, tau-squared=0, p=0.9724						
Mixed control groups						
Westerberg CE et al., 2012	19					68-90 [59-30, 78-50]
Hao YL et al., 2014	37					83.50 [71.76, 95.24]
Ferri R et al., 2012	37	H				109.30 [60.82, 157.78]
Ellis JG et al., 2014	38		⊢	-0		92.69 [79.55, 105.83]
Bumb JM et al., 2014	41					86.10 [70.67, 101.53]
Plante DT et al., 2016	42			H	►	134.10 [104.65, 163.55]
Mascetti L et al. (Val/Val), 2013	43		.⊢		•	117.80 [89.04, 146.56]
Moser D et al. (<60), 2009	44			4		88-40 [85-81, 90-99]
Moser D et al. (>60), 2009	45	⊢				83.70 [68.00, 99.40]
Smith MG et al., 2016	46					80.70 [73.02, 88.38]
Mascetti L et al. (Met carriers), 2013	47		Ē			95.00 [88.12, 101.88]
Goldstein MR et al., 2012	47					95.40 [76.35, 114.45]
de Zambotti M et al., 2014a	50		⊢			99.00 [77.52, 120.48]
Chaparro Vargas R et al., 2016	50		⊢÷	0		103.45 [76.81, 130.09]
Zanini MA et al., 2015	65					89.76 [73.18, 106.34]
King J et al., 2012	67	H				103.33 [61.23, 145.44]
Rao V et al., 2011	86		i			63.80 [40.48, 87.12]
Random effects model for subgroup						88.89 [83.53, 94.25]
Heterogeneity: I-squared=65.2%, tau-squared=58, p<0.0001						
Male control groups						
Chennaoui M et al., 2011	100	⊢ ∎	-			68.50 [64.58, 72.42]
Bahammam AS et al., 2012	100		—			69.30 [56.00, 82.60]
Bahammam AS et al., 2014	100					80.60 [61.96, 99.24]
Simen AA et al., 2015	100	⊢				83.38 [68.29, 98.47]
Hoshikawa M et al., 2015	100					88.70 [74.11, 103.29]
Robey E et al., 2013	100	F				104.80 [68.99, 140.61]
Random effects model for subgroup		-				78.28 [68.94, 87.61]
Heterogeneity: I-squared=65.0%, tau-squared=76, p=0.0139						
Random effects model for all control groups assessed on second	I night or later in sleep laboratory			•		87.28 [82.37, 92.19]
Heterogeneity: I-squared=79.3%, tau-squared=102, p<0.0001						. ,
		Γ		Ι		
		60	80	100	120	

Mean REML, min

Figure S2A. Forest plot showing the effect of sex on mean arterial oxygen saturation (SaO2) for control groups with a mean age of 18–34 years. Control groups are divided into three subgroups: female, mixed (sorted by % male), and male. The mean SaO2 for each control group is represented by a square (size proportional to random effects weight), and the 95% confidence interval (CI) by the horizontal line passing through. Pooled mean SaO2 estimates are represented by diamonds (width indicating associated 95% CI). A dashed vertical line is positioned at the total pooled mean SaO2 estimate.

Figure S2B. Forest plot showing the effect of sex on mean SaO2 for control groups with a mean age of 35–49 years. Legend is as for Fig S2A.

B

First Author (subgroup), Year	% Male							Mean SaO2 [95% Cl
Female control groups								
Moraes W et al. (females aged 45-49 years), 2014	0							95.40 [95.04, 95.76]
Moraes W et al. (females aged 35-39 years), 2014	0							96.00 [95.65, 96.35]
Moraes W et al. (females aged 40-44 years), 2014	0							96.00 [95.72, 96.28]
Random effects model for subgroup					-			95-81 [95-43, 96-19]
Heterogeneity: I-squared=74.9%, tau-squared=0, p=0.0187					:			
Mixed control groups					:			
Bagai K et al., 2016	13							94.00 [93.04, 94.96]
Uygunoglu U et al., 2013	42				÷ –			96.60 [95.33, 97.87]
Brianc, on-Marjollet A et al., 2014	63					-		94.69 [93.78, 95.60]
Steier J et al., 2010	71							95.70 [95.14, 96.26]
Random effects model for subgroup								95.21 [94.24, 96.19]
Heterogeneity: 1-squared=79.7%, tau-squared=1, p.0.0020								
Male control groups								
Zhang H et al., 2015	100	-	•		i			92.60 [90.05, 95.15]
Moraes W et al. (males aged 40-44 years), 2014	100			,				94.30 [93.57, 95.03]
Moraes W et al. (males aged 45-49 years), 2014	100							94.50 [93.99, 95.01]
Moraes W et al. (males aged 35-39 years), 2014	100				i			94.80 [94.52, 95.08]
Joo EY et al., 2010	100			-				94.80 [94.27, 95.33]
Random effects model for subgroup								94.66 [94.39, 94.92]
Heterogeneity: I-squared=19.4%, tau-squared=0, p=0.2914					·			
Random effects model for all control groups with a mean age of 35-49 y	/ears							95-11 [94-68, 95-54]
Heterogeneity: 1-squared=87.9%, tau-squared=0, p<0.0001								
					:			
		92	93	94	95	96	97	
				Mean	SaO2, %			

Figure S2C. Forest plot showing the effect of sex on mean SaO2 for control groups with a mean age of 50–64 years. Legend is as for Fig S2A.

С

First Author (subgroup), Year	% Male							Mean SaO2 [95% CI
Female control groups								
Moraes W et al. (females aged 60-64 years), 2014	0							94.00 [93.30, 94.70]
Moraes W et al. (females aged 55-59 years), 2014	0							94.20 [93.56, 94.84]
Moraes W et al. (females aged 50-54 years), 2014	0			, me				94.30 [93.85, 94.75]
Aittokallio J et al., 2009a	0	-						95.10 [90.27, 99.93]
Aittokallio J et al., 2009b	0				H-0	•		95.20 [94.87, 95.53]
Random effects model for subgroup				:				94.48 [93.89, 95.07]
Heterogeneity: I-squared=77.5%, tau-squared=0, p=0.0014								
Mixed control groups								
Gracitelli CP et al., 2015	31				 i			94.43 [93.67, 95.19]
Baril AA et al., 2015	60							94.90 [94.51, 95.29]
Barut BO et al., 2015	64		0					93.14 [92.00, 94.28]
Random effects model for subgroup			_	:				94.29 [93.42, 95.17]
Heterogeneity: 1-squared=76.9%, tau-squared=0, p.0.0133								
Male control groups								
Moraes W et al. (males aged 55-59 years), 2014	100							93.50 [92.89, 94.11]
Moraes W et al. (males aged 60-64 years), 2014	100		-		-			93.90 [93.29, 94.51]
Moraes W et al. (males aged 50-54 years), 2014	100							95.00 [94.52, 95.48]
Random effects model for subgroup				:				94.15 [93.21, 95.09]
Heterogeneity: 1-squared=87.9%, tau-squared=1, p=0.0003								
Random effects model for all control groups with a mean age of 50-64	years			-				94-34 [93-95, 94-73]
Heterogeneity: I-squared=78.9%, tau-squared=0, p<0.0001								
			1					
		92	93	94	95	96	97	
				Mean	SaO2, %			

Figure S2D. Forest plot showing the effect of sex on mean SaO2 for control groups with a mean age of 65+ years. Legend is as for Fig S2A.

D

First Author (subgroup), Year	% Male							Mean SaO2 [95% CI]
Female control groups								
Moraes W et al. (females aged 70-74 years), 2014	0							93.00 [92.07, 93.93]
Moraes W et al. (females aged 75-80 years), 2014	0		•					93·10 [92·17, 94·03]
Moraes W et al. (females aged 65-69 years), 2014	0		·•					93.30 [92.53, 94.07]
Random effects model for subgroup				-				93.16 [92.66, 93.66]
Heterogeneity: 1-squared=0.0%, tau-squared=0, p=0.8796								
Male control groups								
Moraes W et al. (males aged 70-74 years), 2014	100	-						92.80 [91.19, 94.41]
Moraes W et al. (males aged 75-80 years), 2014	100	-						92.80 [91.83, 93.77]
Moraes W et al. (males aged 65-69 years), 2014	100	-				-		94.00 [92.32, 95.68]
Mazzotti DR et al. (Older adults), 2014	100							94.10 [93.12, 95.08]
Mazzotti DR et al. (Oldest old adults), 2014	100				-			94.20 [92.46, 95.94]
			:					
Random effects model for subgroup								93.52 [92.86, 94.18]
Heterogeneity: 1-squared=22.1%, tau-squared=0, p=0.2737								
Random effects model for all control groups with a mean age of 65+ years				_				93.31 [92.94, 93.68]
Heterogeneity: I-squared=0.0%, tau-squared=0, p=0.5127								95 51 [92 94, 95 00]
					•			
		92	93	94	95	96	97	
				Mean S	SaO2, %			

Figure S3A. Forest plot showing the effect of sex on arousal index (AI) for control groups with a mean age of 18–34 years. Control groups are divided into three subgroups: female, mixed (sorted by % male), and male. The mean AI for each control group is represented by a square (size proportional to random effects weight), and the 95% confidence interval (CI) by the horizontal line passing through. Pooled AI estimates are represented by diamonds (width indicating associated 95% CI). A dashed vertical line is positioned at the total pooled AI estimate.

irst Author (subgroup), Year	% Male		Mean AI [95% C
emale control groups			
de Zambotti M et al., 2015	0	H-8-4	7.50 [5.90, 9.10]
Moraes W et al. (females aged 20-24 years), 2014	0	HOH	8.20 [7.07, 9.33]
Plante DT et al. (females), 2012b	0	⊢∎∔	8.20 [6.49, 9.91]
Moraes W et al. (females aged 25-29 years), 2014	0	HER	8.90 [7.92, 9.88]
Moraes W et al. (females aged 30-34 years), 2014	0	e	9.20 [8.86, 9.54]
Random effects model for subgroup		•	8.67 [8.06, 9.28]
Heterogeneity: I-squared=46.8%, tau-squared=0, p=0.1111			
fixed control groups			
Dang Vu TT et al., 2015	17	⊢ ∎	8.11 [6.38, 9.84]
Nayak C et al., 2016b	24	HEH	6.38 [5.39, 7.37]
Kuna ST et al., 2012	30	HEH	12.70 [11.91, 13.49]
Plante DT et al., 2012a	43		5.03 [2.96, 7.10]
Imbach LL et al., 2012	43	H 0 -1	6.21 [4.97, 7.46]
Booth JN et ul., 2012	44	⊢ ∎	14.00 [11.91, 16.09]
Nayak C et al., 2015	44	H 0 -1	12.38 [11.12, 13.64]
Nayak C et al., 2016a	45	, ∎ <u>i</u> ,	9.01 [6.53, 11.49]
Smith MG et al., 2016	46	HEH	6.90 [6.06, 7.74]
Ko CH et al., 2015	46	HEH	6.00 [4.97, 7.03]
Goldstein MR et al., 2012	47		7.56 [5.47, 9.65
Perin C et al., 2012	48		8.90 [7.06, 10.74
de Zambotti M et al., 2014a	50		7.00 [5.59, 8.41]
Cho JR et al., 2013	60		9.10 [8.32, 9.88]
Adachi T et al. (weight gainers), 2011	60	·	
Adachi T et al. (weight maintainers), 2011	63	_	21.20 [16.69, 25.71]
Landsness EC et al., 2011	65		12.30 [9.81, 14.79]
Zanini MA et al., 2015	65		13.14 [5.12, 21.16]
Random effects model for subgroup		📥	9.73 [8.28, 11.19]
Heterogeneity: I-squared=94.6%, tau-squared=8, p<0.0001			
fale control groups			
Plante DT et al. (males), 2012b	100		7.40 [4.27, 10.53]
Mazzotti DR et al. (Young adults), 2014	100	Ho-i	8.80 [7.38, 10.22]
Bahammam AS et al., 2014	100		9.10 [6.61, 11.59]
Moraes W et al. (males aged 20-24 years), 2014	100	H d H	9.30 [8.01, 10.59]
Pamidi S et al., 2012	100		9.90 [7.74, 12.06]
Moraes W et al. (males aged 25-29 years), 2014	100	·	12.10 [10.38, 13.82]
Moraes W et al. (males aged 30-34 years), 2014	100	· • • • • • • • • • • • • • • • • • • •	13.60 [11.66, 15.54]
Bahammam AS et al., 2012	100	⊢−□ −−1	15.20 [12.50, 17.90]
Random effects model for subgroup			10.68 [9.06, 12.29]
Heterogeneity: I-squared=82.0%, tau-squared=4, p<0.0001		•	
Random effects model for all control groups with a mean age of 18–34 year Heterogeneity: I-squared=92·1%, tau-squared=5, p<0·0001	ars	•	9.61 [8.78, 10.44]
neerogeneny. 1 -squareu-92-17%, tau-squareu-9, p<0'0001		· · · · · · · · · · · · · · · · · · ·	
		i i I	
		0 10 20	30

Mean AI, events/h

Figure S3B. Forest plot showing the effect of sex on AI for control groups with a mean age of 35–49 years. Legend is as for Fig S3A.

B

First Author (subgroup), Year	% Male		Mean AI [95% CI]
Parala antest array			
Female control groups Baker FC et al., 2015	0		8.10 [7.09, 9.11]
Moraes W et al. (females aged 35–39 years), 2014	0		11.20 [9.48, 12.92]
Moraes W et al. (females aged 40–44 years), 2014 Moraes W et al. (females aged 40–44 years), 2014	0		11.20 [9.48, 12.92]
Moraes W et al. (females aged 45–49 years), 2014 Moraes W et al. (females aged 45–49 years), 2014	*		13.20 [11.25, 15.15]
Dubrovsky B et al., 2014	0		13-20 [11-23, 13-13] 17-00 [15-03, 18-97]
Random effects model for subgroup			12.22 [9.28, 15.15]
Heterogeneity: I-squared=94.6%, tau-squared=11, p<0.0001		:	
Mixed control groups			
Bagai K et al., 2016	13	⊢− ∎−−1	9.00 [6.72, 11.28]
Riedner BA et al., 2016	25	H	9.90 [2.65, 17.15]
Ferri R et al., 2009	25		8.80 [6.47, 11.13]
Vollono C et al. (Matched Controls), 2013	25	, o	14.40 [10.17, 18.63]
Tascilar NF et al., 2012	33		16.62 [13.80, 19.44]
Hao YL et al., 2014	37	H	9.00 [7.60, 10.40]
Huang L et al., 2012	42	÷ +	21.80 [19.27, 24.33]
Landry S et al., 2016	43	H	7.60 [6.03, 9.17]
Cepeda FX et al., 2015	44	⊢ ∎	8.00 [6.04, 9.96]
Reinhard MA et al., 2014	45	H-8-4	16.90 [14.96, 18.84]
Garcia CEV et al., 2013	60	·	12.00 [6.12, 17.88]
Opie GM et al., 2013	82	⊢	11.50 [8.49, 14.51]
Lin CC et al., 2016	90	H 0 -1	4.90 [3.72, 6.08]
Chen WJ et al., 2015	90	H 0 H	4.90 [3.72, 6.08]
Random effects model for subgroup			11.00 [8.40, 13.61]
Heterogeneity: I-squared=95.6%, tau-squared=22, p<0.0001		_	
Male control groups			
Joo EY et al., 2010	100		11.40 [9.36, 13.44]
Moraes W et al. (males aged 35-39 years), 2014	100	P÷−∎I	13.70 [11.51, 15.89]
Moraes W et al. (males aged 40-44 years), 2014	100		19.60 [16.09, 23.11]
Moraes W et al. (males aged 45-49 years), 2014	100	F	21.30 [16.41, 26.19]
Random effects model for subgroup			16.08 [11.98, 20.19]
Heterogeneity: I-squared=87.8%, tau-squared=15, p<0.0001			
Random effects model for all control groups with a mean age of 35–49 y Heterogeneity: I-squared=95.2%, tau-squared=19, p<0.0001	cars		12.15 [10.29, 14.00]
reterogeneity: 1-squared=95.2%, tau-squared=19, p<0.0001		:	
		1 1 1	i I
		0 10 20	30

Mean AI, events/h

Figure S3C. Forest plot showing the effect of sex on AI for control groups with a mean age of 50–64 years. Legend is as for Fig S3A.

С

First Author (subgroup), Year	% Male					Mean AI [95% C
Female control groups						
Moraes W et al. (females aged 55-59 years), 2014	0					16.10 [13.10, 19.10]
Mork PJ et al., 2013	0					17.00 [12.40, 21.60]
Moraes W et al. (females aged 50-54 years), 2014	0		F			18.10 [14.18, 22.02]
Moraes W et al. (females aged 60-64 years), 2014	0			· •		21.60 [17.04, 26.16]
Random effects model for subgroup						17.86 [15.59, 20.13]
Heterogeneity: I-squared=25.7%, tau-squared=1, p=0.2572						
Mixed control groups						
Gracitelli CP et al., 2015	31		· · · · · ·		i	19.39 [11.27, 27.51]
Margis R et al., 2015	40				-	20.50 [15.47, 25.53]
Vollono C et al. (Controls), 2013	42		н <mark>ш</mark> н			11.50 [10.92, 12.08]
Piano C et al., 2015	47		⊢ ∎-			13.90 [12.15, 15.65]
Pont Sunyer C et al., 2015	50		⊢			18.10 [13.60, 22.60]
Wienecke M et al., 2012	50					13.50 [7.30, 19.70]
Jaimchariyatam N et al., 2014	52		HEH			13.32 [12.44, 14.20]
Della Marca G et al., 2013	52					8.65 [5.69, 11.61]
Sorensen GL et al., 2012	53		0	<u> </u>		14.50 [11.46, 17.54]
Barut BO et al., 2015	64					18.57 [14.47, 22.67]
Landry S et al., 2014	75					15.31 [12.82, 17.80]
Sasai T et al., 2013	77		٠			17.70 [14.42, 20.98]
Random effects model for subgroup			<			14.63 [13.10, 16.17]
Heterogeneity: I-squared=83.5%, tau-squared=5, p<0.0001						
Male control groups						
Moraes W et al. (males aged 50-54 years), 2014	100			÷		21.60 [16.26, 26.94]
Moraes W et al. (males aged 60-64 years), 2014	100			.		23.20 [15.49, 30.91]
Moraes W et al. (males aged 55-59 years), 2014	100			·		23.70 [20.01, 27.39]
Random effects model for subgroup					•	23.05 [20.22, 25.87]
Heterogeneity: I-squared=0.0%, tau-squared=0, p=0.8171						
Random effects model for all control groups with a mean age of 50-64 year	ars			+		16.54 [14.93, 18.16]
Heterogeneity: I-squared=87.7%, tau-squared=9, p<0.0001						
				I		
		0	10	20	30	
			Mean AI,	events/h		

Figure S3D. Forest plot showing the effect of sex on AI for control groups with a mean age of 65+ years. Legend is as for Fig S3A.

D

First Author (subgroup), Year	% Male					Mean AI [95% CI]
Female control groups Moraes W et al. (females aged 70-74 years), 2014	0		<u> </u>			16.40 [12.48, 20.32]
Moraes W et al. (females aged 65-69 years), 2014 Moraes W et al. (females aged 75-80 years), 2014	0 0		1		-	17·90 [13·59, 22·21] 19·70 [13·43, 25·97]
Random effects model for subgroup Heterogeneity: 1-squared=0·0%, tau-squared=0, p=0·6678				-		17.54 [14.91, 20.17]
Mixed control groups Abc S et al. 2013	56					9.63 [6.77, 12.49]
Arnulf I et al., 2015	82			⊷⊸		17.60 [15.32, 19.88]
Random effects model for subgroup Heterogeneity: 1−squared=94·5%, tau–squared=30, p<0·0001						13.66 [5.85, 21.47]
Male control groups						10 00 110 00 05 (0)
Moraes W et al. (males aged 70-74 years), 2014 Mazzotti DR et al. (Older adults), 2014	100		-		-	19·30 [12·98, 25·62] 23·80 [17·71, 29·89]
Moraes W et al. (males aged 75–80 years), 2014	100					25.90 [15.16, 36.64]
Moraes W et al. (males aged 65-69 years), 2014	100			·		26.50 [19.64, 33.36]
Mazzotti DR et al. (Oldest old adults), 2014	100			<u>⊢ :</u>		31.60 [15.42, 47.78]
Random effects model for subgroup Heterogeneity: 1–squared=0.0%, tau–squared=0, p=0·4660				-		23.72 [20.30, 27.13]
Random effects model for all control groups with a mean age of 65+ years Heterogeneity: 1-squared=80.0%, tau-squared=22, p<0.0001						19·26 [15·77, 22·75]
	I		1			
	0	,	10	20	30	

Mean AI, events/h

Figure S4A. Forest plot showing the effect of sex on apnea-hypopnea index (AHI) for control groups with a mean age of 18–34 years. Control groups are divided into three subgroups: female, mixed (sorted by % male), and male. The mean AHI for each control group is represented by a square (size proportional to random effects weight), and the 95% confidence interval (CI) by the horizontal line passing through. Pooled AHI estimates are represented by diamonds (width indicating associated 95% CI). A dashed vertical line is positioned at the total pooled AHI estimate.

A

irst Author (subgroup), Year	% Male				Mean AHI [95%
Semale control groups		_ :			0.50 [0.27, 0.7
Moraes W et al. (females aged 20-24 years), 2014	0	•			· ,
Moraes W et al. (females aged 25–29 years), 2014	0	HEH			1.00 [0.53, 1.4
Moraes W et al. (females aged 30-34 years), 2014	0	H O H			1.30 [0.81, 1.7
Random effects model for subgroup		•			0.90 [0.39, 1.4
Heterogeneity: I-squared=80·4%, tau-squared=0, p=0·0061					
Aixed control groups					
Dang Vu TT et al., 2015	17	•			0.31 [0.09, 0.5
Nayak C et al., 2016b	24	H-B			1.20 [0.49, 1.9
Orr WC et al., 2014	28				0.50 [0.31, 0.6
Kuna ST et al., 2012	30	Ö			1.80 [1.61, 1.9
Imbach LL et al., 2012	43	H-0			0.89 [0.12, 1.6
Nayak C et al., 2015	44	←			2.36 [-1.78, 6.5
Nayak C et al., 2016a	45	HEH :			0.40 [0.08, 0.7
Goldstein MR et al., 2012	47	H O H :			0.57 [0.00, 1.1
Cheng P et al., 2013	52	•			0.18 [-0.03, 0.3
Benbir G et al., 2013	55	⊢∎÷ı			1.10 [0.27, 1.9
McCann UD et al., 2009	57	÷ ⊢			3.18 [2.60, 3.7
Adachi T et al. (weight gainers), 2011	60	⊢∎∔			1.10 [0.51, 1.6
Chen X et al., 2015	62	н	н		2.80 [2.40, 3.2
Adachi T et al. (weight maintainers), 2011	63				1.60 [0.42, 2.7
Zanini MA et al., 2015	65	H O H			1.04 [0.52, 1.5
Bouazizi E et al., 2016	78				3.70 [2.72, 4.6
Rao V et al., 2011	86	÷ —			4.30 [1.95, 6.6
Spiebhofer J, 2016	87	⊢÷∎			1.90 [1.14, 2.6
D'Rozario AL et al., 2013	89	H	 i		4.50 [2.74, 6.2
Random effects model for subgroup		<u>.</u>			1.54 [1.08, 2.0
Heterogeneity: I-squared=95.5%, tau-squared=1, p<0.0001		Ť			
Aale control groups					
Koyama T et al., 2015	100	H O H			0.90 [0.40, 1.4
Pamidi S et al., 2012	100	H			1.60 [1.01, 2.1
Mazzotti DR et al. (Young adults), 2014	100		-		1.70 [0.13, 3.2
Moraes W et al. (males aged 20-24 years), 2014	100	H O HI			2.10 [1.52, 2.6
Moraes W et al. (males aged 25-29 years), 2014	100				4.40 [2.83, 5.9
Moraes W et al. (males aged 30–34 years), 2014	100			••••••	7.80 [5.08, 10.5
Random effects model for subgroup					2.52 [1.49, 3.5
Heterogeneity: I-squared=88.2%, tau-squared=1, p<0.0001					
Random effects model for all control groups with a mean age of 18-34 year	s	•			1.60 [1.24, 1.9
Heterogeneity: I-squared=89.6%, tau-squared=0, p<0.0001					
		0	5	10	15

Mean AHI, events/h

Figure S4B. Forest plot showing the effect of sex on AHI for control groups with a mean age of 35–49 years. Legend is as for Fig S4A.

В

First Author (subgroup), Year	% Male		Mean AHI [95% C
Family and a second			
Female control groups Dubrovsky B et al., 2014	0		2.40 [1.27, 3.53]
Moraes W et al. (females aged 40–44 years), 2014	0		2:40 [1:27, 3:35] 2:40 [1:45, 3:35]
	-		3.50 [1.45, 5.05]
Moraes W et al. (females aged 35–39 years), 2014 Moraes W et al. (females aged 45–49 years), 2014	0		6·30 [4·21, 8·39]
Moraes w et al. (lemaies aged 45-49 years), 2014	0	· · · · · · · · · · · · · · · · · · ·	6.50 [4.21, 8.59]
Random effects model for subgroup		· · · · · · · · · · · · · · · · · · ·	3.41 [2.03, 4.78]
Heterogeneity: I-squared=76.2%, tau-squared=1, p=0.0056			
Mixed control groups			
Bagai K et al., 2016	13		1.60 [0.74, 2.46]
Vollono C et al. (Matched Controls), 2013	25		2.10 [1.55, 2.65]
Tascilar NF et al., 2012	33		0.74 [0.43, 1.05]
Landry S et al., 2016	43	HEH	0.60 [0.21, 0.99]
Cepeda FX et al., 2015	43		4.00 [2.04, 5.96]
Reinhard MA et al., 2013			3.60 [2.33, 4.87]
Neutel D et al., 2015	45 48		6.00 [3.74, 8.26]
Lederer DJ et al., 2009	48 50		1.00 [-0.24, 2.24]
Garcia CEV et al., 2013	50 60		2.00 [0.04, 3.96]
Brianc.on-Marjollet A et al., 2014	60		6·42 [4·14, 8·70]
Steier J et al., 2010	71		0.50 [0.20, 0.80]
Jung DW et al., 2014	80		2.20 [1.33, 3.07]
Opie GM et al., 2013	80		2.90 [1.72, 4.08]
Chen WJ et al., 2015	90		3.80 [3.41, 4.19]
Random effects model for subgroup			2.44 [1.64, 3.24]
Heterogeneity: I-squared=95.3%, tau-squared=2, p<0.0001			
Male control groups			
Zhao D et al., 2016	100		0.98 [0.90, 1.06]
Saunamaki T et al., 2009	100	⊢ ∎÷i	2.50 [1.58, 3.42]
Joo EY et al., 2013	100	н ш)	2.80 [2.47, 3.13]
Joo EY et al., 2010	100	H B H	2.80 [2.24, 3.36]
Zhang H et al., 2015	100	HEH C	3.70 [3.44, 3.96]
Moraes W et al. (males aged 35-39 years), 2014	100	⊢ □	7.90 [5.65, 10.15]
Moraes W et al. (males aged 40-44 years), 2014	100	⊢	■ 13·30 [8·69, 17·91]
Moraes W et al. (males aged 45-49 years), 2014	100		▶ 16.00 [11.05, 20.95]
Random effects model for subgroup			4.43 [3.08, 5.79]
Heterogeneity: I-squared=98.8%, tau-squared=3, p<0.0001			
Random effects model for all control groups with a mean age of 35–49 year Heterogeneity: I-squared=97.3%, tau-squared=2, p<0.0001	rs	+	3 05 [2 46, 3 65]
Heterogeneity: 1-squared=97.5%, tau-squared=2, p<0.0001		:	
		1 1	1 1
		0 5	10 15
		-	

Mean AHI, events/h

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
1.	Adachi T et al. ⁴ (weight	2011	16	29.6 (9.2)	63	TST, AHI, AI	YES	YES	NO	NO
	maintainers) Adachi T et al. (weight gainers)	2011	20	29.7 (6.3)	60	TST, AHI, AI	YES	YES	NO	NO
2.	Aittokallio J et	2009b	22	55.5 (1.2)	0	AHI, MSaO2, mSaO2	YES	YES	NO	NO
3.	Aittokallio J et al. ⁶	2009a	9	55.6 (1.1)	0	AHI, MSaO2, mSaO2	NO	YES	NO	NO
4.	Bahammam AS et al. ⁷	2014	8	26.6 (4.9)	100	TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), PLMI, AI	YES	NO	NO	NO
5.	Bahammam AS et al. ⁸	2012	8	32.0 (2.4)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AI	YES	YES	NO	NO
6.	Crispim CA et al. ⁹ (women)	2011	27	28.8 (6.6)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	NO	NO
	Crispim CA et al. (men)	2011	25	27.2 (5.9)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	NO	NO
7.	de Zambotti M et al. ¹⁰	2012	15	22.3 (1.6)	0	TST, SOL, REML, SE,	YES	YES	YES	NO
8.	Markwald RR et al. ¹¹	2016	29	24.0 (5.3)	72	WASO TST, SOL, SE, WASO	YES	YES	YES	NO
9.	de Zambotti M et al. ¹²	2014b	16	45.2 (9.1)	50	wASO TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	NO	NO
10.	de Zambotti M et al. ¹³	2014a	14	24.4 (1.6)	50	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST),	YES	YES	YES	NO

Table S10: Characteristics of studies included in meta-analysis.

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided REM(%TST), AI	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
11.	Baker FC et al. ¹⁴	2015	34	49.3 (2.6)	0	TST, SOL, REML, SE, WASO, AHI, mSaO2, PLMI, AI	YES	YES	YES	NO
12.	Cellini N et al. ¹⁵	2014	13	24.3 (1.6)	46	TST, SOL, SE, WASO	YES	YES	YES	NO
13.	de Zambotti M et al. ¹⁶	2015	11	29.1 (7.3)	0	TST, SOL, REML, SE, WASO, AI	YES	NO	NO	NO
14.	Petit E et al. ¹⁷	2014	16	22.2 (1.7)	100	WA50, AI TST, SOL, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	NO	NO
15.	Kuna ST et al. ¹⁸	2012	200	29.9 (7.2)	30	TST, SOL, REML, SE, WASO, AHI, AI	YES	NO	NO	NO
16.	Leufkens TRM et al. ¹⁹	2014	21	61.7 (5.0)	62	TST, SOL, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST),	YES	YES	YES	NO
17.	Nayak C et al. ²⁰	2015	25	23.3 (3.7)	44	TST, SE, AHI, MSaO2, mSaO2, AI	YES	YES	NO	NO
18.	Nayak C et al. ²¹	2016a	20	23.2 (3.8)	45	TST, SOL, SE,	YES	YES	NO	NO
19.	Nayak C et al. ²²	2016b	25	26.3 (7.4)	24	AHI, PLMI, AI TST, SE, AHI, DI MI, AI	YES	YES	NO	NO
20.	Kobayashi I et	2012	23	22.6 (5.0)	65	PLMI, AI TST, SOL,	YES	YES	YES	NO
21.	al. ²³ St-Onge MP et al. ²⁴	2016	26	35.1 (5.1)	50	WASO TST, SOL	YES	YES	NO	NO
22.	Perrier J et al. ²⁵	2015	10	46 (15)	40	TST, REML, SE	YES	YES	YES	NO
23.	Plante DT et al. ²⁶	2016	24	23.3 (4.0)	42	TST, SOL, REML, SE, WASO	YES	YES	YES	NO
24.	Landsness EC et al. ²⁷	2011	17	24.3 (3.7)	65	wASO TST, REML, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AI	YES	NO	NO	NO
25.	Hulse BK et al. ²⁸	2011	12	21.9 (1.7)	50	TST, SOL, SE	YES	NO	NO	NO
26.	al. Goldstein MR et al. ²⁹	2012	15	21.4 (1.6)	47	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, AI	YES	NO	YES	NO

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
27.	Plante DT et al. ³⁰ (females)	2012b	19	23.1 (6.2)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AI	YES	YES	YES	NO
	Plante DT et al. (males)	2012b	11	29.4 (10.7)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AI	YES	YES	YES	NO
28.	Plante DT et al. ³¹	2012a	7	22.0 (1.3)	43	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AI	YES	YES	YES	NO
29.	Riedner BA et al. ³²	2016	8	41.6 (13.6)	25	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AI,	YES	YES	YES	NO
30.	Moraes W et al. ³³ (males aged 20-24 years)	2014	60	20-24 (MP)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
	Moraes W et al. (males aged 25- 29 years)	2014	60	25-29 (MP)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
	Moraes W et al. (males aged 30- 34 years)	2014	65	30-34 (MP)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
	Moraes W et al. (males aged 35- 39 years)	2014	59	35-39 (MP)	100	TST, SOL, REML, SE, WASO,	NO	NO	NO	YES

First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2,	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
Moraes W et al. (males aged 40- 44 years)	2014	56	40-44 (MP)	100	mSaO2, PLMI, AI TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (males aged 45- 49 years)	2014	48	45-49 (MP)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (males aged 50- 54 years)	2014	38	50-54 (MP)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (males aged 55- 59 years)	2014	30	55-59 (MP)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (males aged 60- 64 years)	2014	20	60-64 (MP)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (males aged 65- 69 years)	2014	14	65-69 (MP)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2,	NO	NO	NO	YES

First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided mSaO2, PLMI, AI	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
Moraes W et al. (males aged 70- 74 years)	2014	10	70-74 (MP)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (males aged 75- 80 years)	2014	8	75-80 (MP)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 20-24 years)	2014	46	20-24 (MP)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 25-29 years)	2014	70	25-29 (MP)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 30-34 years)	2014	64	30-34 (MP)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 35-39 years)	2014	60	35-39 (MP)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 40-44 years)	2014	72	40-44 (MP)	0	TST, SOL, REML, SE, WASO,	NO	NO	NO	YES

First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
					N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	uisorucis	uisorucis		
Moraes W et al. (females aged 45-49 years)	2014	78	45-49 (MP)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 50-54 years)	2014	49	50-54 (MP)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 55-59 years)	2014	49	55-59 (MP)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 60-64 years)	2014	28	60-64 (MP)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 65-69 years)	2014	26	65-69 (MP)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 70-74 years)	2014	16	70-74 (MP)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2,	NO	NO	NO	YES

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided mSaO2, PLMI, AI	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
	Moraes W et al. (females aged 75-80 years)	2014	16	75-80 (MP)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
31.	Saunamaki T et	2009	20	43	100	AHI	YES	YES	YES	NO
32.	al. ³⁴ Hanlon EC et	2016	14	23.4 (3.0)	79	TST, SE	YES	YES	YES	NO
33.	al. ³⁵ Rao MN et al. ³⁶	2015	14	27 (5)	57	TST	YES	YES	YES	NO
34.	McCann UD et al. ³⁷	2011	43	23.6 (21.6)	53	TST, SOL, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	YES	NO
35.	Zhou JY et al. ³⁸	2012	10	33.6 (13.1)	50	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	NO	YES	YES	ΝΟ
36.	Broussard JL et al. ³⁹	2015	19	23.5 (3.1)	100	TST, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	NO	NO
37.	Christensen	2016	23	56.7 (9.2)	30	SE, PLMI	YES	NO	NO	NO
38.	JAE et al. ⁴⁰ Reinhard MA et al. ⁴¹	2014	38	39.6 (8.9)	45	TST, SOL, SE, WASO, AHI, PLMI, AI	YES	YES	YES	NO
39.	Vandekerchkho	2012	28	22.4 (5.8)	54	TST, SOL, SE,	YES	NO	YES	NO
40.	ve M et al. ⁴² Jaimchariyatam N et al. ⁴³	2014	350	54.2 (19.8)	52	WASO SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, mSaO2, PLMI, AI	YES	YES	YES	NO
41.	Mellman TA et al. ⁴⁴	2014	24	23.7 (5.8)	54	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	YES	NO
42.	Liu H et al. ⁴⁵	2014	26	40.5 (12.0)	38	TST, SOL, SE, WASO, N1(%TST),	YES	YES	YES	NO

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided N2(%TST),	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
						N3(%TST), REM(%TST)				
43.	Cervena K et al. ⁴⁶	2014	10	41.4 (13.1)	50	TST, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	YES	NO
44.	Zhang Z & Katami R ⁴⁷	2014	14	30.1 (10.7)	43	SE, N3(%TST),	YES	NO	NO	NO
45.	Zinkhan M et al. ⁴⁸	2014	100	51.3 (13.0)	49	REM(%TST) TST, SOL, SE, WASO, AHI, PLMI	NO	NO	NO	YES
46.	Bumb JM et al. ⁴⁹	2014	27	39.0 (13.1)	41	TST, SOL,	YES	YES	YES	NO
47.	al. ⁵⁰ (Young adults)	2014	15	24.3 (2.2)	100	REML, SE TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
	Mazzotti DR et al. (Older adults)	2014	13	65.5 (3.1)	100	TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
	Mazzotti DR et al. (Oldest old adults)	2014	10	91.9 (6.1)	100	TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
48.	Krishnan P et al. ⁵¹	2014	25	23.2 (3.0)	76	TST, SOL, REML, SE, WASO	YES	NO	NO	NO
49.	Lafortune M et al. ⁵²	2014	58	63.1 (8.5)	57	TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	NO	YES	NO
50.	Brayet P et al. ⁵³	2014	32	63.7 (6.6)	69	SOL, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI	YES	YES	YES	NO
51.	Hao YL et al. ⁵⁴	2014	30	39.1 (7.5)	37	TST, SOL, REML, SE,	YES	YES	YES	NO

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
						WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AI				
52.	dos Santos DF et al. ⁵⁵	2014	44	41.3 (10.0)	NR	SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, PLMI, AI	NO	YES	NO	NO
53.	Briançon- Marjollet A et al. ⁵⁶	2014	16	49.3 (11.8)	63	AHI, MSaO2, mSaO2	NO	NO	NO	NO
54.	al. ⁵⁰ Ellis JG et al. ⁵⁷	2014	21	34.1 (13.8)	38	TST, SOL, REML, SE,	YES	YES	YES	NO
55.	Da Woon J. et	2014	10	38.7 (14.6)	80	WASO TST, SOL, SE,	YES	YES	YES	NO
56.	al. ⁵⁸ Lorenz RA et	2014	50	69.5 (8.8)	30	WASO, AHI TST, SOL, SE,	NO	NO	NO	YES
57.	al. ⁵⁹ Meng J et al. ⁶⁰	2011	30	32.7 (5.9)	63	WASO SE, MSaO2,	YES	YES	NO	NO
58.	Joo EY et al. ⁶¹	2010	44	47.2 (5.4)	100	mSaO2 AHI, MSaO2,	YES	YES	YES	NO
59.	Iranzo A et al. ⁶²	2010	10	NR	90	mSaO2, AI TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, PLMI	YES	NO	NO	NO
60.	Steier J et al.63	2010	21	36 (17)	71	TST, SE, AHI, MSaO2	NO	YES	NO	NO
61.	Calvin AD et al. ⁶⁴	2010	18	54.7 (16.8)	72	AHI	NO	NO	NO	NO
62.	McCann UD et al. ⁶⁵	2009	62	24.1	57	AHI	YES	YES	YES	NO
63.	Lederer DJ et al. ⁶⁶	2009	10	40 (9)	50	AHI, mSaO2	YES	YES	NO	NO
64.	Moser D et al. $(<60)^{67}$	2009	25	39.2 (11.0)	44	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	NO	NO	NO
	Moser D et al. (>60)	2009	31	74.1 (7.6)	45	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	NO	NO	NO
65.	Ferri R et al. ⁶⁸	2009	12	46.7 (15.2)	25	AI	YES	YES	YES	NO
66.	Spiebhofer J ⁶⁹	2016	15	24.9 (3.8)	87	AHI	NO	YES	NO	NO
67.	Zhang H et al. ⁷⁰	2015	9	39 (7)	100	AHI, MSaO2, mSaO2	YES	NO	NO	NO

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
68.	Qu Y et al. ⁷¹	2015	10	44.7 (11.9)	NR	MSaO2, mSaO2	NO	NO	NO	NO
69.	Chowduri S et al. ⁷²	2015	14	62 (8)	43	AHI	NO	YES	NO	NO
70.	Orr WC et al. ⁷³	2014	25	27.3 (9.3)	28	TST, SOL, WASO, AHI	YES	YES	YES	NO
71.	Uygunoglu U et al. ⁷⁴	2013	44	35.4 (8.7)	42	WASO, AIII TST, SOL, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), RDI, MSaO2, mSaO2, PLMI	NO	NO	NO	NO
72.	Sasai T et al. ⁷⁵	2013	17	59.5 (5.6)	77	AHI, PLMI, AI	YES	NO	NO	NO
73.	Mork PJ et al. ⁷⁶	2013	22	54.2 (8.2)	0	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), PLMI, AI	NO	YES	NO	NO
74.	Zavalko IM et al. ⁷⁷	2013	6	NR	100	N1(%TST), N2(%TST), N3(%TST), AI	NO	YES	NO	NO
75.	Jung DW et al. ⁷⁸	2013	10	28.7 (3.2)	60	SOL	YES	YES	YES	NO
76.	al. ⁷⁹ Rauchs G et	2013	14	75.1 (4.6)	56	TST, SOL, SE,	YES	NO	YES	NO
77.	ul. ⁸⁰ Videnovic A et al. ⁸⁰	2013	10	62.7 (11.5)	80	WASO TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	NO	NO	NO	NO
78.	Cheng P et al. ⁸¹	2013	29	32.2	52	AHI	YES	NO	YES	NO
79.	Della Marca G et al. ⁸²	2013	25	61.9 (8.6)	52	TST, SOL, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AI	NO	NO	NO	NO
80.	Benbir G et al. ⁸³	2013	20	27.6 (11.2)	55	TST, SOL, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI	NO	NO	NO	NO
81.	Joo EY et al. ⁸⁴	2013	36	43.7 (5.3)	100	AHI	YES	YES	YES	NO
82.	D'Rozario AL et al. ⁸⁵	2013	9	27.8 (3.7)	89	TST, SE, AHI, mSaO2, AI	YES	YES	YES	NO
83.	Vollono C et al. ⁸⁶ (Matched	2013	8	46.7 (10.7)	25	TST, SOL, SE, WASO, AHI, AI	NO	NO	NO	NO

	First author (subgroup within study) Controls)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
	Vollono C et al.	2013	55	54.2 (13.0)	42	TST, SOL, SE,	YES	YES	YES	NO
84.	(Controls) Robey E et al. ⁸⁷	2013	11	26.0 (4.4)	100	WASO, AHI, AI TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	NO	NO	NO	NO
85.	Bruno RM et al. ⁸⁸	2013	20	51.0 (7.9)	75	AHI, mSaO2	YES	YES	NO	NO
86.	Opie GM et al. ⁸⁹	2013	11	43.0 (10.3)	82	SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, AI	YES	NO	YES	NO
87.	Wong SN et al. ⁹⁰	2013	12	25.2 (4.0)	25	TST, SOL, SE, WASO, N3(%TST), REM(%TST)	YES	YES	NO	NO
88.	Sorenson GL et al. ⁹¹	2013	22	32.2 (8.4)	27	TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	NO	NO	NO
89.	Shaikh ZF et al. ⁹²	2013	50	52 (11)	84	AHI	NO	NO	NO	NO
90.	Garcia-Lorenzo D et al. ⁹³	2013	19	60.2 (8.3)	53	TST, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	NO	NO	NO	NO
91.	Perin C et al. ⁹⁴	2012	25	25.5 (7.3)	48	SE, N3(%TST), REM(%TST), MSaO2, mSaO2, AI	YES	YES	NO	NO
92.	Huang L et al. ⁹⁵	2012	48	38 (12)	42	TST, SOL, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AI	YES	YES	YES	NO
93.	Wienecke M et al. ⁹⁶	2012	10	63.4 (8.0)	50	TST, REML, SE, AHI, PLMI, AI	YES	NO	NO	NO
94.	Imbach LL et al. ⁹⁷	2012	14	30 (8)	43	TST, REML, SE, AHI, PLMI, AI	YES	NO	NO	NO
95.	Poirrier AL et al. ⁹⁸	2012	18	50.1 (6.6)	100	AHI	YES	NO	NO	NO
96.	al. ⁹⁹ Ferri R et al. ⁹⁹	2012	19	67.5 (7.3)	37	TST, SOL,	YES	NO	YES	NO
97.	Tascilar NF et al. ¹⁰⁰	2012	21	38.2 (8.2)	33	REML, SE TST, SOL, REML, SE, WASO, N1(%TST),	YES	NO	YES	NO

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
						N2(%TST), N3(%TST), REM(%TST), AHI, mSaO2, PLMI, AI				
98.	Sorensen GL et al. ¹⁰¹	2012	15	62.4 (9.7)	53	TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AI	NO	NO	YES	NO
99.	King J et al. ¹⁰²	2012	6	24.7 (3.3)	67	TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), MSaO2, mSaO2	YES	YES	NO	NO
100.	Benbir G et al. ¹⁰³	2012	35	65.7 (10.1)	69	TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI	NO	NO	NO	NO
101.	Scatena M et al. ¹⁰⁴	2012	25	44.3 (18.4)	52	TST, SOL, SE	NO	NO	NO	NO
102.	Piano C et al. ¹⁰⁵	2015	30	56.5 (11.8)	47	TST, SOL, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), mSaO2, AI	YES	YES	NO	ΝΟ
103.	Gracitelli CP et al. ¹⁰⁶	2015	13	56.8 (7.8)	31	TST, SOL, REML, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	NO
104.	Chen WJ et al. ¹⁰⁷	2015	20	44 (8)	90	SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, mSaO2, AI	NO	YES	NO	NO
105.	Gunbey E et al. ¹⁰⁸	2015	15	50.2 (13.5)	73	AHI, mSaO2	NO	YES	NO	NO
106.	al. ¹⁰⁰ Pont Sunyer C et al. ¹⁰⁹	2015	14	50.8 (16.0)	50	TST, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, PLMI, AI	NO	NO	NO	NO

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
107.	Chen X et al. ¹¹⁰	2015	40	34.5 (10.0)	62	AHI, MSaO2, mSaO2	YES	YES	YES	NO
108.	Dang Vu TT et al. ¹¹¹	2015	12	21.1 (2.4)	17	ntsa02 TST, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, AI	YES	YES	YES	NO
109.	Neutel D et al. ¹¹²	2015	29	47.5 (12.3)	48	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, PLMI	NO	NO	NO	NO
110.	Arnulf I et al. ¹¹³	2015	74	66.6 (6.1)	82	TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, PLMI, AI	NO	NO	NO	ΝΟ
111.	Margis R et al. ¹¹⁴	2015	9	64.8 (6.3)	40	TST, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, AI	YES	NO	NO	NO
112.	Lin YH et al. ¹¹⁵	2015	14	24.6 (3.6)	43	TST, SOL, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	YES	NO
113.	Shin M et al. ¹¹⁶	2015	9	23.3 (4.1)	67	TST, SOL, SE,	YES	YES	NO	NO
114.	Koyama T et al. ¹¹⁷	2015	10	21.9 (3.3)	100	WASO AHI	YES	YES	NO	NO
115.	al. Mariotti P et al. ¹¹⁸	2015	30	66.8 (10.0)	57	TST, SOL, SE, WASO	NO	NO	NO	NO
116.	al. Bioulac S et al. ¹¹⁹	2015	19	36.3 (10.5)	47	TST, SE	YES	YES	YES	NO
117.	al. Baril AA et al. ¹²⁰	2015	20	64.1 (7.1)	60	SE, AHI, MSaO2, mSaO2	YES	YES	YES	NO
118.		2015	15	37.3 (10.5)	NR	mSaO2 TST, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, mSaO2, AI	YES	YES	YES	NO
119.	Fogel SM et al. ¹²²	2015	12	21.8 (2.9)	33	TST, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	YES	NO
120.	Goder R et al. ¹²³	2015	16	28.3 (6.1)	44	TST, SOL, SE, N1(%TST), N2(%TST), N3(%TST),	NO	NO	YES	NO

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided REM(%TST)	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
121.	van Gilst MM et al. ¹²⁴	2015	20	58.5 (7.5)	58	TST, SOL, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	NO	NO	YES	NO
122.	Lin CC et al. ¹²⁵	2016	20	43 (8)	90	SE, AI	NO	YES	NO	NO
123.	Eltawdy M et al. ¹²⁶	2016	20	40.3 (17.3)	75	TST, SOL, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), mSaO2, PLMI	NO	NO	NO	NO
124.	Chaparro Vargas R et al. ¹²⁷	2016	10	31.5 (11.3)	50	SOL, REML	NO	NO	NO	NO
125.	Arnaldi D et al. ¹²⁸	2016	10	61 (7)	50	TST, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI	NO	NO	NO	NO
126.	Liao H et al. ¹²⁹	2016	20	59.9 (3.7)	55	TST, SOL, SE, N3(%TST), REM(%TST), AHI	NO	YES	NO	NO
127.	Bagai K et al. ¹³⁰	2016	15	35.3 (10.5)	13	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, MSaO2, PLMI, AI	YES	NO	NO	NO
128.	Zhao D et al. ¹³¹	2016	10	36.5 (2.3)	100	AHI	YES	NO	NO	NO
129.	Lo JC et al. ¹³²	2014	14	66.6 (4.1)	50	TST, SOL, SE,	NO	NO	YES	NO
130.	Ooms et al. ¹³³	2014	13	49.4 (5.5)	100	WASO TST, SE, WASO	YES	NO	NO	NO
131.	Deliens G et	2013	25	26.2 (4.7)	NR	TST, SOL	YES	NO	YES	NO
132.	al. ¹³⁴ Mascetti L et	2013	14	21.7 (1.6)	43	TST, REML	YES	YES	YES	NO
	al. ¹³⁵ (Val/Val) Mascetti L et al.	2013	15	21.6 (1.8)	47	TST, REML	YES	YES	YES	NO
133.	(Met carriers) Broussard JL et	2012	7	23.7 (3.8)	86	TST	YES	YES	NO	NO
134.	al. ¹³⁶ Booth JN et ul. ¹³⁷	2012	43	26 (4)	44	TST, SOL, REML, SE, WASO, AI	YES	YES	NO	NO
135.	Dubé J et al. ¹³⁸ (Older adults)	2015	33	60.4 (5.7)	46	TST, SOL, SE, WASO, AHI, mSaO2, PLMI, AI	YES	NO	YES	NO

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
	Dubé J et al. (Younger adults)	2015	30	23.5 (2.8)	53	TST, SOL, SE, WASO, AHI, mSaO2, PLMI, AI	YES	NO	YES	NO
136.	Ujma PP et al. ¹³⁹	2015	79	23.3 (2.6)	100	TST, SOL, REML	YES	NO	YES	NO
137.	al. ¹⁴⁰ Zanini MA et al. ¹⁴⁰	2015	20	19.1 (4.0)	65	TST, SOL, REML, SE, WASO, AHI, PLMI, AI	NO	YES	YES	NO
138.	Hoshikawa M et al. ¹⁴¹	2015	7	23.8 (3.0)	100	TST, SOL, REML, SE, WASO, MSaO2, mSaO2	NO	NO	NO	NO
139.	Smith MG et al. ¹⁴²	2016	24	22.9 (2.8)	46	SOL, REML, SE,	YES	NO	NO	NO
140.	al. ¹⁴³ Bouazizi E et	2016	55	26.6 (6.4)	78	WASO, AI TST, SE, AHI	NO	NO	NO	NO
141.	al. ¹⁴⁵ Dubrovsky B et al. ¹⁴⁴	2014	46	36.1 (13.5)	0	TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, PLMI, AI	NO	NO	NO	NO
142.	Glos M et al. ¹⁴⁵	2014	11	24.5 (10.0)	100	TST, SOL, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	YES	NO
143.	Wilhelm I et al. ¹⁴⁶	2014	17	21.3 (3.0)	82	TST, SOL, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	NO	YES	NO
144.	Hachul H et al. ¹⁴⁷	2011	17	NR	0	AHI, mSaO2, PLMI	NO	YES	YES	NO
145.	al. ¹⁴⁸ Biermasz NR et al. ¹⁴⁸	2011	17	NR	65	PLMI TST, SOL, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AHI, mSaO2	YES	YES	NO	NO
146.	Donga E et al. ¹⁴⁹	2010	9	44.6 (14.7)	56	TST, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	NO	YES	NO
147.	Schytz HW et	2013	13	52.0 (10.1)	77	AHI	NO	YES	NO	NO
148.	al. ¹⁵⁰ Garcia CEV et	2013	10	39.0 (9.5)	60	AHI, mSaO2, AI	NO	YES	NO	NO
149.	al. ¹⁵¹ Abe S et al. ¹⁵²	2013	9	65.1 (12.0)	56	AHI, PLMI, AI	NO	NO	NO	NO
150.	Wuyts J et al. ¹⁵³	2012	16	23.9 (3.2)	50	TST, SOL, SE, N1(%TST), N2(%TST), N3(%TST),	YES	YES	NO	NO

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided REM(%TST)	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
151.	Montgomery- Downs HE et al. ¹⁵⁴	2012	24	26.1	60	TST, SE	YES	NO	NO	NO
152.	Biard K et al. ¹⁵⁵	2015	20	NR	0	TST, SOL, REML, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	YES	NO
153.	Guan W et al. ¹⁵⁶	2015	7	32.9 (22.0)	NR	TST, SE, N1(%TST), N2(%TST), N3(%TST), REM(%TST), MSaO2, mSaO2, AI	YES	YES	NO	ΝΟ
154.	Cepeda FX et al. ¹⁵⁷	2015	16	46.0 (6.8)	44	mSaO2, AI	NO	NO	NO	NO
155.	al. ¹⁵⁸ Hudson JD et al. ¹⁵⁸	2015	25	NR	59	N1(%TST), N2(%TST), N3(%TST), REM(%TST), PLMI, AI,s	YES	YES	YES	NO
156.	Ko CH et al. ¹⁵⁹	2015	13	20-23 (MP)	46	TST, SOL, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AI	YES	YES	YES	NO
157.	Barut BO et al. ¹⁶⁰	2015	14	50.6 (8.6)	64	TST, SOL, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), MSaO2, mSaO2, PLMI, AI	YES	NO	NO	NO
158.	Varga AW et al. ¹⁶¹ (Younger subjects)	2016	18	20	44	TST, N1(%TST), N2(%TST), N3(%TST),	YES	YES	NO	NO
	Varga AW et al. (Older subjects)	2016	13	68.2	39	REM(%TST) TST, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	NO	NO
159.	Landry S et al. ¹⁶²	2014	12	52.8 (6.7)	75	TST, WASO, AI	YES	NO	NO	NO
160.	al. ¹⁶² Rao V et al. ¹⁶³	2011	7	25	86	TST, SOL, REML, SE, WASO, PLMI	YES	YES	YES	NO
161.	Pamidi S et al. ¹⁶⁴	2012	20	22.5 (2.7)	100	TST, SE, mSaO2,	YES	YES	NO	NO
162.	al. ¹⁶¹ Simen AA et al. ¹⁶⁵	2015	20	33.9	100	AI TST, SOL, REML, SE, WASO	NO	NO	NO	NO
163.	Poryazova R et al. ¹⁶⁶	2015	8	51.9 (16.4)	38	WASO TST, WASO	NO	NO	NO	NO

	First author (subgroup within study)	Year	N	Age (years)	Sex (% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from population- based studies
164.	Lustenberger C et al. ¹⁶⁷	2015	20	23.3 (9.4)	100	TST, SOL, SE, WASO	YES	YES	YES	NO
165.	Landry S et al. ¹⁶⁸	2016	14	47.0 (10.1)	43	TST, SOL, SE, WASO, mSaO2, PLMI, AI	YES	YES	YES	NO
166.	Buchmann A et al. ¹⁶⁹	2011	20	25.2 (4.1)	55	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	NO	NO	NO	NO
167.	Chennaoui M et al. ¹⁷⁰	2011	12	29.1 (3.3)	100	TST, SOL, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST)	YES	YES	NO	NO
168.	Cho JR et al. ¹⁷¹	2013	10	27	60	TST, REML, SE, WASO, N1(%TST), N2(%TST), N3(%TST), REM(%TST), AI	YES	YES	YES	NO
169.	Westerberg CE et al. ¹⁷²	2012	16	72.7 (5.1)	19	TST, SOL, REML, SE, WASO	YES	YES	YES	NO

Abbreviations: Total sleep time (TST), sleep efficiency (SE), wake after sleep onset (WASO), sleep onset latency (SOL), REM latency (REML), arousal index (AI), as a percentage of total sleep time (%TST), apnea-hypopnea index (AHI), mean arterial oxygen saturation (MSaO₂), minimum arterial oxygen saturation (mSaO₂), and periodic limb movement index (PLMI).

Parameter not reported (NR).

Age data expressed as mean (SD). For studies that did not provide a mean age, the midpoint of the provided age range was estimated to be the mean age in this meta-analysis; this is indicated by "MP" beside the age range listed above.

References for Supplementary Appendix

1. Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. *J R Stat Soc Ser A Stat Soc* 2009; **172**(1): 137-59.

2. Nagashima K, Noma H, Furukawa TA. Prediction intervals for random-effects meta-analysis: A confidence distribution approach. *Stat Methods Med Res* 2018: 962280218773520.

3. Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. *Journal of Statistical Software* 2010; **36**(3): 1-48.

4. Adachi T, Sert-Kuniyoshi FH, Calvin AD, et al. Effect of weight gain on cardiac autonomic control during wakefulness and sleep. *Hypertension* 2011; **57**(4): 723-30.

5. Aittokallio J, Saaresranta T, Virkki A, et al. Transcutaneous carbon dioxide profile during sleep reveals metabolic risk factors in post-menopausal females. *The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology* 2009; **34**(5): 1132-9.

6. Aittokallio J, Hiissa J, Saaresranta T, Polo-Kantola P, Aittokallio T, Polo O. Nocturnal transcutaneous carbon dioxide tension in postmenopausal estrogen users and non-users. *Menopause international* 2009; **15**(3): 107-12.

7. Bahammam AS, Almushailhi K, Pandi-Perumal SR, Sharif MM. Intermittent fasting during Ramadan: does it affect sleep? *Journal of sleep research* 2014; **23**(1): 35-43.

8. Bahammam AS, Sharif MM, Spence DW, Pandi-Perumal SR. Sleep architecture of consolidated and split sleep due to the dawn (Fajr) prayer among Muslims and its impact on daytime sleepiness. *Annals of thoracic medicine* 2012; **7**(1): 36-41.

9. Crispim CA, Zimberg IZ, dos Reis BG, Diniz RM, Tufik S, de Mello MT. Relationship between food intake and sleep pattern in healthy individuals. *Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine* 2011; 7(6): 659-64.

10. de Zambotti M, Covassin N, Cellini N, Sarlo M, Torre J, Stegagno L. Hemodynamic and autonomic modifications during sleep stages in young hypotensive women. *Biol Psychol* 2012; **91**(1): 22-7.

11. Markwald RR, Bessman SC, Reini SA, Drummond SP. Performance of a Portable Sleep Monitoring Device in Individuals with High Versus Low Sleep Efficiency. *Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine* 2016; **12**(1): 95-103.

12. de Zambotti M, Baker FC, Sugarbaker DS, Nicholas CL, Trinder J, Colrain IM. Poor autonomic nervous system functioning during sleep in recently detoxified alcohol-dependent men and women. *Alcoholism, clinical and experimental research* 2014; **38**(5): 1373-80.

13. de Zambotti M, Cellini N, Baker FC, Colrain IM, Sarlo M, Stegagno L. Nocturnal cardiac autonomic profile in young primary insomniacs and good sleepers. *International journal of psychophysiology : official journal of the International Organization of Psychophysiology* 2014; **93**(3): 332-9.

14. Baker FC, Willoughby AR, Sassoon SA, Colrain IM, de Zambotti M. Insomnia in women approaching menopause: Beyond perception. *Psychoneuroendocrinology* 2015; **60**: 96-104.

15. Cellini N, de Zambotti M, Covassin N, Sarlo M, Stegagno L. Working memory impairment and cardiovascular hyperarousal in young primary insomniacs. *Psychophysiology* 2014; **51**(2): 206-14.

16. de Zambotti M, Colrain IM, Baker FC. Interaction between reproductive hormones and physiological sleep in women. *The Journal of clinical endocrinology and metabolism* 2015; **100**(4): 1426-33.

17. Petit E, Mougin F, Bourdin H, Tio G, Haffen E. A 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions. *European journal of applied physiology* 2014; **114**(2): 305-15.

18. Kuna ST, Maislin G, Pack FM, et al. Heritability of performance deficit accumulation during acute sleep deprivation in twins. *Sleep* 2012; **35**(9): 1223-33.

19. Leufkens TR, Ramaekers JG, de Weerd AW, Riedel WJ, Vermeeren A. On-the-road driving performance and driving-related skills in older untreated insomnia patients and chronic users of hypnotics. *Psychopharmacology* 2014; **231**(14): 2851-65.

20. Nayak C, Sinha S, Nagappa M, Thennarasu K, Taly AB. Lack of heart rate variability during apnea in patients with juvenile myoclonic epilepsy (JME). *Sleep & breathing = Schlaf & Atmung* 2015; **19**(4): 1175-83.

21. Nayak CS, Sinha S, Nagappa M, Kandavel T, Taly AB. Effect of valproate on the sleep microstructure of juvenile myoclonic epilepsy patients - a cross-sectional CAP based study. *Sleep medicine* 2016; **17**: 129-33.

22. Nayak C, Sinha S, Nagappa M, et al. Study of sleep microstructure in patients of migraine without aura. *Sleep & breathing = Schlaf & Atmung* 2016; **20**(1): 263-9.

23. Kobayashi I, Huntley E, Lavela J, Mellman TA. Subjectively and objectively measured sleep with and without posttraumatic stress disorder and trauma exposure. *Sleep* 2012; **35**(7): 957-65.

24. St-Onge MP, Roberts A, Shechter A, Choudhury AR. Fiber and Saturated Fat Are Associated with Sleep Arousals and Slow Wave Sleep. *Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine* 2016; **12**(1): 19-24.

25. Perrier J, Clochon P, Bertran F, et al. Specific EEG sleep pattern in the prefrontal cortex in primary insomnia. *PloS one* 2015; **10**(1): e0116864.

26. Plante DT, Goldstein MR, Cook JD, et al. Effects of partial sleep deprivation on slow waves during nonrapid eye movement sleep: A high density EEG investigation. *Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology* 2016; **127**(2): 1436-44.

27. Landsness EC, Ferrarelli F, Sarasso S, et al. Electrophysiological traces of visuomotor learning and their renormalization after sleep. *Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology* 2011; **122**(12): 2418-25.

28. Hulse BK, Landsness EC, Sarasso S, et al. A postsleep decline in auditory evoked potential amplitude reflects sleep homeostasis. *Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology* 2011; **122**(8): 1549-55.

29. Goldstein MR, Plante DT, Hulse BK, et al. Overnight changes in waking auditory evoked potential amplitude reflect altered sleep homeostasis in major depression. *Acta psychiatrica Scandinavica* 2012; **125**(6): 468-77.

30. Plante DT, Landsness EC, Peterson MJ, et al. Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation. *BMC psychiatry* 2012; **12**: 146.

31. Plante DT, Landsness EC, Peterson MJ, et al. Altered slow wave activity in major depressive disorder with hypersomnia: a high density EEG pilot study. *Psychiatry research* 2012; **201**(3): 240-4.

32. Riedner BA, Goldstein MR, Plante DT, et al. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study. *Sleep* 2016; **39**(4): 801-12.

33. Moraes W, Piovezan R, Poyares D, Bittencourt LR, Santos-Silva R, Tufik S. Effects of aging on sleep structure throughout adulthood: a population-based study. *Sleep medicine* 2014; **15**(4): 401-9.

34. Saunamaki T, Himanen SL, Polo O, Jehkonen M. Executive dysfunction in patients with obstructive sleep apnea syndrome. *European neurology* 2009; **62**(4): 237-42.

35. Hanlon EC, Tasali E, Leproult R, et al. Sleep Restriction Enhances the Daily Rhythm of Circulating Levels of Endocannabinoid 2-Arachidonoylglycerol. *Sleep* 2016; **39**(3): 653-64.

36. Rao MN, Neylan TC, Grunfeld C, Mulligan K, Schambelan M, Schwarz JM. Subchronic sleep restriction causes tissue-specific insulin resistance. *The Journal of clinical endocrinology and metabolism* 2015; **100**(4): 1664-71.

37. McCann UD, Edwards RR, Smith MT, et al. Altered pain responses in abstinent (+/-)3,4-

methylenedioxymethamphetamine (MDMA, "ecstasy") users. Psychopharmacology 2011; 217(4): 475-84.

38. Zhou JY, Tang XD, Huang LL, Zhong ZQ, Lei F, Zhou D. The acute effects of levetiracetam on nocturnal sleep and daytime sleepiness in patients with partial epilepsy. *Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia* 2012; **19**(7): 956-60.

39. Broussard JL, Chapotot F, Abraham V, et al. Sleep restriction increases free fatty acids in healthy men. *Diabetologia* 2015; **58**(4): 791-8.

40. Christensen JAE, Jennum P, Koch H, et al. Sleep stability and transitions in patients with idiopathic REM sleep behavior disorder and patients with Parkinson's disease. *Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology* 2016; **127**(1): 537-43.

41. Reinhard MA, Regen W, Baglioni C, et al. The relationship between brain morphology and polysomnography in healthy good sleepers. *PloS one* 2014; **9**(10): e109336.

42. Vandekerckhove M, Kestemont J, Weiss R, et al. Experiential versus analytical emotion regulation and sleep: breaking the link between negative events and sleep disturbance. *Emotion (Washington, DC)* 2012; **12**(6): 1415-21.

43. Jaimchariyatam N, Rodriguez CL, Budur K. Sleep-related cortical arousals in adult subjects with negative polysomnography. *Sleep & breathing = Schlaf & Atmung* 2015; **19**(3): 989-96.

44. Mellman TA, Kobayashi I, Lavela J, Wilson B, Hall Brown TS. A relationship between REM sleep measures and the duration of posttraumatic stress disorder in a young adult urban minority population. *Sleep* 2014; **37**(8): 1321-6.

45. Liu H, Wang D, Li Y, et al. Examination of daytime sleepiness and cognitive performance testing in patients with primary insomnia. *PloS one* 2014; **9**(6): e100965.

46. Cervena K, Espa F, Perogamvros L, Perrig S, Merica H, Ibanez V. Spectral analysis of the sleep onset period in primary insomnia. *Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology* 2014; **125**(5): 979-87.

47. Zhang Z, Khatami R. Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study. *The European journal of neuroscience* 2014; **40**(9): 3396-404.

48. Zinkhan M, Berger K, Hense S, et al. Agreement of different methods for assessing sleep characteristics: a comparison of two actigraphs, wrist and hip placement, and self-report with polysomnography. *Sleep medicine* 2014; **15**(9): 1107-14.

49. Bumb JM, Schilling C, Enning F, et al. Pineal gland volume in primary insomnia and healthy controls: a magnetic resonance imaging study. *Journal of sleep research* 2014; **23**(3): 274-80.

50. Mazzotti DR, Guindalini C, Moraes WA, et al. Human longevity is associated with regular sleep patterns, maintenance of slow wave sleep, and favorable lipid profile. *Front Aging Neurosci* 2014; **6**: 134.

51. Krishnan P, Sinha S, Taly AB, Ramachandraiah CT, Rao S, Satishchandra P. Altered polysomnographic profile in juvenile myoclonic epilepsy. *Epilepsy research* 2014; **108**(3): 459-67.

52. Lafortune M, Gagnon JF, Martin N, et al. Sleep spindles and rapid eye movement sleep as predictors of next morning cognitive performance in healthy middle-aged and older participants. *Journal of sleep research* 2014; **23**(2): 159-67.

53. Brayet P, Petit D, Frauscher B, et al. Quantitative EEG of Rapid-Eye-Movement Sleep: A Marker of Amnestic Mild Cognitive Impairment. *Clin EEG Neurosci* 2016; **47**(2): 134-41.

54. Hao YL, Zhang B, Jia FJ, et al. A three-phase epidemiological study of short and long sleepers in a middleaged Chinese population: prevalence and characteristics. *Brazilian journal of medical and biological research* = *Revista brasileira de pesquisas medicas e biologicas* 2014; **47**(2): 157-65.

55. dos Santos DF, Pedroso JL, Braga-Neto P, et al. Excessive fragmentary myoclonus in Machado-Joseph disease. *Sleep medicine* 2014; **15**(3): 355-8.

56. Briancon-Marjollet A, Henri M, Pepin JL, Lemarie E, Levy P, Tamisier R. Altered in vitro endothelial repair and monocyte migration in obstructive sleep apnea: implication of VEGF and CRP. *Sleep* 2014; **37**(11): 1825-32.

57. Ellis JG, Perlis ML, Bastien CH, Gardani M, Espie CA. The natural history of insomnia: acute insomnia and first-onset depression. *Sleep* 2014; **37**(1): 97-106.

58. Da Woon J, Su Hwan H, Hee Nam Y, Lee YJ, Do-Un J, Kwang Suk P. Nocturnal awakening and sleep efficiency estimation using unobtrusively measured ballistocardiogram. *IEEE transactions on bio-medical engineering* 2014; **61**(1): 131-8.

59. Lorenz RA, Budhathoki CB, Kalra GK, Richards KC. The relationship between sleep and physical function in community-dwelling adults: a pilot study. *Fam Community Health* 2014; **37**(4): 298-306.

60. Meng J, Xuan J, Qiao X, et al. Assessment of sleep impairment in persistent allergic rhinitis patients using polysomnography. *International archives of allergy and immunology* 2011; **155**(1): 57-62.

61. Joo EY, Kim HJ, Lim YH, Koo DL, Hong SB. Altered cortical excitability in patients with untreated obstructive sleep apnea syndrome. *Sleep medicine* 2010; **11**(9): 857-61.

62. Iranzo A, Isetta V, Molinuevo JL, et al. Electroencephalographic slowing heralds mild cognitive impairment in idiopathic REM sleep behavior disorder. *Sleep medicine* 2010; **11**(6): 534-9.

63. Steier J, Jolley CJ, Seymour J, et al. Increased load on the respiratory muscles in obstructive sleep apnea. *Respiratory physiology & neurobiology* 2010; **171**(1): 54-60.

64. Calvin AD, Somers VK, Steensma DP, et al. Advanced heart failure and nocturnal hypoxaemia due to central sleep apnoea are associated with increased serum erythropoietin. *European journal of heart failure* 2010; **12**(4): 354-9.

65. McCann UD, Sgambati FP, Schwartz AR, Ricaurte GA. Sleep apnea in young abstinent recreational MDMA ("ecstasy") consumers. *Neurology* 2009; **73**(23): 2011-7.

66. Lederer DJ, Jelic S, Basner RC, Ishizaka A, Bhattacharya J. Circulating KL-6, a biomarker of lung injury, in obstructive sleep apnoea. *The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology* 2009; **33**(4): 793-6.

67. Moser D, Anderer P, Gruber G, et al. Sleep classification according to AASM and Rechtschaffen & Kales: effects on sleep scoring parameters. *Sleep* 2009; **32**(2): 139-49.

68. Ferri R, Gschliesser V, Frauscher B, Poewe W, Hogl B. Periodic leg movements during sleep and periodic limb movement disorder in patients presenting with unexplained insomnia. *Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology* 2009; **120**(2): 257-63.

69. Spiesshofer J, Fox H, Lehmann R, et al. Heterogenous haemodynamic effects of adaptive servoventilation therapy in sleeping patients with heart failure and Cheyne-Stokes respiration compared to healthy volunteers. *Heart and vessels* 2016; **31**(7): 1117-30.

70. Zhang H, Ye JY, Hua L, et al. Inhomogeneous neuromuscular injury of the genioglossus muscle in subjects with obstructive sleep apnea. *Sleep & breathing = Schlaf & Atmung* 2015; **19**(2): 539-45.

71. Qu Y, Ye JY, Han DM, et al. Esophageal Functional Changes in Obstructive Sleep Apnea/Hypopnea Syndrome and Their Impact on Laryngopharyngeal Reflux Disease. *Chinese medical journal* 2015; **128**(16): 2162-7.

72. Chowdhuri S, Pranathiageswaran S, Franco-Elizondo R, et al. Effect of age on long-term facilitation and chemosensitivity during NREM sleep. *Journal of applied physiology (Bethesda, Md : 1985)* 2015; **119**(10): 1088-96.

73. Orr WC, Goodrich S, Estep ME, Shepherd K. The relationship between complaints of night-time heartburn and sleep-related gastroesophageal reflux. *Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus* 2014; **27**(4): 303-10.

74. Uygunoglu U, Benbir G, Saip S, Kaynak H, Siva A. A polysomnographic and clinical study of sleep disorders in patients with Behcet and neuro-Behcet syndrome. *European neurology* 2014; **71**(3-4): 115-9.

75. Sasai T, Matsuura M, Inoue Y. Electroencephalographic findings related with mild cognitive impairment in idiopathic rapid eye movement sleep behavior disorder. *Sleep* 2013; **36**(12): 1893-9.

76. Mork PJ, Nilsson J, Loras HW, Riva R, Lundberg U, Westgaard RH. Heart rate variability in fibromyalgia patients and healthy controls during non-REM and REM sleep: a case-control study. *Scandinavian journal of rheumatology* 2013; **42**(6): 505-8.

77. Zavalko IM, Rasskazova EI, Gordeev SA, Palatov S, Kovrov GV. [Effects of long-term isolation and anticipation of significant event on sleep: results of the project "Mars-520"]. *Fiziologiia cheloveka* 2013; **39**(6): 45-52.

78. Jung DW, Hwang SH, Chung GS, Lee YJ, Jeong DU, Park KS. Estimation of sleep onset latency based on the blood pressure regulatory reflex mechanism. *IEEE journal of biomedical and health informatics* 2013; **17**(3): 534-44.

79. Rauchs G, Piolino P, Bertran F, et al. Retrieval of Recent Autobiographical Memories is Associated with Slow-Wave Sleep in Early AD. *Frontiers in behavioral neuroscience* 2013; 7: 114.

80. Videnovic A, Marlin C, Alibiglou L, Planetta PJ, Vaillancourt DE, Mackinnon CD. Increased REM sleep without atonia in Parkinson disease with freezing of gait. *Neurology* 2013; **81**(12): 1030-5.

81. Cheng P, M DC, Chen CF, Hoffmann RF, Armitage R, Deldin PJ. Sleep-disordered breathing in major depressive disorder. *Journal of sleep research* 2013; **22**(4): 459-62.

82. Della Marca G, Sancricca C, Losurdo A, et al. Sleep disordered breathing in a cohort of patients with sporadic inclusion body myositis. *Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology* 2013; **124**(8): 1615-21.

83. Benbir G, Kutlu A, Gozubatik-Celik G, Karadeniz D. CAP characteristics differ in patients with arousal parasomnias and frontal and temporal epilepsies. *Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society* 2013; **30**(4): 396-402.

84. Joo EY, Jeon S, Kim ST, Lee JM, Hong SB. Localized cortical thinning in patients with obstructive sleep apnea syndrome. *Sleep* 2013; **36**(8): 1153-62.

85. D'Rozario AL, Kim JW, Wong KK, et al. A new EEG biomarker of neurobehavioural impairment and sleepiness in sleep apnea patients and controls during extended wakefulness. *Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology* 2013; **124**(8): 1605-14.

86. Vollono C, Gnoni V, Testani E, et al. Heart rate variability in sleep-related migraine without aura. *Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine* 2013; **9**(7): 707-14.

87. Robey E, Dawson B, Halson S, et al. Effect of evening postexercise cold water immersion on subsequent sleep. *Medicine and science in sports and exercise* 2013; **45**(7): 1394-402.

88. Bruno RM, Rossi L, Fabbrini M, et al. Renal vasodilating capacity and endothelial function are impaired in patients with obstructive sleep apnea syndrome and no traditional cardiovascular risk factors. *Journal of hypertension* 2013; **31**(7): 1456-64; discussion 64.

89. Opie GM, Catcheside PG, Usmani ZA, Ridding MC, Semmler JG. Motor cortex plasticity induced by theta burst stimulation is impaired in patients with obstructive sleep apnoea. *The European journal of neuroscience* 2013; **37**(11): 1844-52.

90. Wong SN, Halaki M, Chow CM. The effects of moderate to vigorous aerobic exercise on the sleep need of sedentary young adults. *Journal of sports sciences* 2013; **31**(4): 381-6.

91. Sorensen GL, Knudsen S, Petersen ER, et al. Attenuated heart rate response is associated with hypocretin deficiency in patients with narcolepsy. *Sleep* 2013; **36**(1): 91-8.

92. Shaikh ZF, Jaye J, Ward N, et al. Patent foramen ovale in severe obstructive sleep apnea: clinical features and effects of closure. *Chest* 2013; **143**(1): 56-63.

93. Garcia-Lorenzo D, Longo-Dos Santos C, Ewenczyk C, et al. The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson's disease. *Brain : a journal of neurology* 2013; **136**(Pt 7): 2120-9.

94. Perin C, Fagondes SC, Casarotto FC, Pinotti AF, Menna Barreto SS, Dalcin Pde T. Sleep findings and predictors of sleep desaturation in adult cystic fibrosis patients. *Sleep & breathing = Schlaf & Atmung* 2012; **16**(4): 1041-8.

95. Huang L, Zhou J, Li Z, Lei F, Tang X. Sleep perception and the multiple sleep latency test in patients with primary insomnia. *Journal of sleep research* 2012; **21**(6): 684-92.

96. Wienecke M, Werth E, Poryazova R, et al. Progressive dopamine and hypocretin deficiencies in Parkinson's disease: is there an impact on sleep and wakefulness? *Journal of sleep research* 2012; **21**(6): 710-7.

97. Imbach LL, Werth E, Kallweit U, Sarnthein J, Scammell TE, Baumann CR. Inter-hemispheric oscillations in human sleep. *PloS one* 2012; **7**(11): e48660.

98. Poirrier AL, Pire S, Raskin S, Limme M, Poirrier R. Contribution of postero-anterior cephalometry in obstructive sleep apnea. *The Laryngoscope* 2012; **122**(10): 2350-4.

99. Ferri R, Fulda S, Cosentino FI, Pizza F, Plazzi G. A preliminary quantitative analysis of REM sleep chin EMG in Parkinson's disease with or without REM sleep behavior disorder. *Sleep medicine* 2012; **13**(6): 707-13.

100. Tascilar NF, Tekin NS, Ankarali H, et al. Sleep disorders in Behcet's disease, and their relationship with fatigue and quality of life. *Journal of sleep research* 2012; **21**(3): 281-8.

101. Sorensen GL, Kempfner J, Zoetmulder M, Sorensen HB, Jennum P. Attenuated heart rate response in REM sleep behavior disorder and Parkinson's disease. *Movement disorders : official journal of the Movement Disorder Society* 2012; **27**(7): 888-94.

102. King J, Kupferthaler A, Frauscher B, et al. Measurement of endogenous acetone and isoprene in exhaled breath during sleep. *Physiol Meas* 2012; **33**(3): 413-28.

103. Benbir G, Karadeniz D. Periodic leg movements in sleep in patients with supratentorial cerebral infarction. *Acta neurologica Belgica* 2012; **112**(1): 27-32.

104. Scatena M, Dittoni S, Maviglia R, et al. An integrated video-analysis software system designed for movement detection and sleep analysis. Validation of a tool for the behavioural study of sleep. *Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology* 2012; **123**(2): 318-23.

105. Piano C, Losurdo A, Della Marca G, et al. Polysomnographic Findings and Clinical Correlates in Huntington Disease: A Cross-Sectional Cohort Study. *Sleep* 2015; **38**(9): 1489-95.

106. Gracitelli CP, Duque-Chica GL, Roizenblatt M, et al. Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma. *Ophthalmology* 2015; **122**(6): 1139-48.
107. Chen WJ, Liaw SF, Lin CC, Chiu CH, Lin MW, Chang FT. Effect of Nasal CPAP on SIRT1 and

Endothelial Function in Obstructive Sleep Apnea Syndrome. Lung 2015; 193(6): 1037-45.

108. Gunbey E, Guzel A, Karli R, Unal R. The relationships between the clinical and polysomnographic findings and the olfactory function in patients with obstructive sleep apnea syndrome. *Sleep & breathing = Schlaf & Atmung* 2015; **19**(4): 1301-7.

109. Pont-Sunyer C, Iranzo A, Gaig C, et al. Sleep Disorders in Parkinsonian and Nonparkinsonian LRRK2 Mutation Carriers. *PloS one* 2015; **10**(7): e0132368.

110. Chen X, Zhang R, Xiao Y, Dong J, Niu X, Kong W. Reliability and Validity of the Beijing Version of the Montreal Cognitive Assessment in the Evaluation of Cognitive Function of Adult Patients with OSAHS. *PloS one* 2015; **10**(7): e0132361.

111. Dang-Vu TT, Salimi A, Boucetta S, et al. Sleep spindles predict stress-related increases in sleep disturbances. *Frontiers in human neuroscience* 2015; **9**: 68.

112. Neutel D, Tchikviladze M, Charles P, et al. Nocturnal agitation in Huntington disease is caused by arousalrelated abnormal movements rather than by rapid eye movement sleep behavior disorder. *Sleep medicine* 2015; **16**(6): 754-9.

113. Arnulf I, Neutel D, Herlin B, et al. Sleepiness in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease. *Sleep* 2015; **38**(10): 1529-35.

114. Margis R, Schonwald SV, Carvalho DZ, Gerhardt GJ, Rieder CR. NREM sleep alpha and sigma activity in Parkinson's disease: evidence for conflicting electrophysiological activity? *Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology* 2015; **126**(5): 951-8.

115. Lin YH, Jen CH, Yang CM. Information processing during sleep and stress-related sleep vulnerability. *Psychiatry and clinical neurosciences* 2015; **69**(2): 84-92.

116. Shin M, Swan P, Chow CM. The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions. *Sleep science (Sao Paulo, Brazil)* 2015; 8(1): 9-15.
117. Koyama T, Sato S, Kanbayashi T, et al. Apnea during Cheyne-Stokes-like breathing detected by a

piezoelectric sensor for screening of sleep disordered breathing. *Sleep and Biological Rhythms* 2015; **13**(1): 57-67. 118. Mariotti P, Quaranta D, Di Giacopo R, et al. Rapid eye movement sleep behavior disorder: a window on the emotional world of Parkinson disease. *Sleep* 2015; **38**(2): 287-94.

119. Bioulac S, Chaufton C, Taillard J, et al. Excessive daytime sleepiness in adult patients with ADHD as measured by the Maintenance of Wakefulness Test, an electrophysiologic measure. *The Journal of clinical psychiatry* 2015; **76**(7): 943-8.

120. Baril AA, Gagnon K, Arbour C, et al. Regional Cerebral Blood Flow during Wakeful Rest in Older Subjects with Mild to Severe Obstructive Sleep Apnea. *Sleep* 2015; **38**(9): 1439-49.

121. Djonlagic I, Guo M, Matteis P, Carusona A, Stickgold R, Malhotra A. First night of CPAP: impact on memory consolidation attention and subjective experience. *Sleep medicine* 2015; **16**(6): 697-702.

122. Fogel SM, Ray LB, Binnie L, Owen AM. How to become an expert: A new perspective on the role of sleep in the mastery of procedural skills. *Neurobiol Learn Mem* 2015; **125**: 236-48.

123. Goder R, Graf A, Ballhausen F, et al. Impairment of sleep-related memory consolidation in schizophrenia: relevance of sleep spindles? *Sleep medicine* 2015; **16**(5): 564-9.

124. van Gilst MM, van Mierlo P, Bloem BR, Overeem S. Quantitative Motor Performance and Sleep Benefit in Parkinson Disease. *Sleep* 2015; **38**(10): 1567-73.

125. Lin CC, Liaw SF, Chiu CH, Chen WJ, Lin MW, Chang FT. Effects of nasal CPAP on exhaled SIRT1 and tumor necrosis factor-alpha in patients with obstructive sleep apnea. *Respiratory physiology & neurobiology* 2016; **228**: 39-46.

126. Eltawdy M, Rabah A, Nada M, Refaat R, Afifi L. Sleep disorders in chronic kidney disease patients. *Egyptian Journal of Neurology, Psychiatry and Neurosurgery* 2016; **53**(1): 48-53.

127. Chaparro-Vargas R, Schilling C, Schredl M, Cvetkovic D. Sleep electroencephalography and heart rate variability interdependence amongst healthy subjects and insomnia/schizophrenia patients. *Medical & biological engineering & computing* 2016; **54**(1): 77-91.

128. Arnaldi D, Latimier A, Leu-Semenescu S, Vidailhet M, Arnulf I. Loss of REM sleep features across nighttime in REM sleep behavior disorder. *Sleep medicine* 2016; **17**: 134-7.

129. Liao H, Zhao L, Liu K, Chen X. Investigation of the relationship between arterial stiffness and sleep architecture in patients with essential hypertension. *Clinical and experimental hypertension (New York, NY : 1993)* 2016; **38**(1): 113-8.

130. Bagai K, Peltier AC, Malow BA, et al. Objective Sleep Assessments in Patients with Postural Tachycardia Syndrome using Overnight Polysomnograms. *Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine* 2016; **12**(5): 727-33.

131. Zhao D, Li Y, Xian J, et al. Relationship of genioglossus muscle activation and severity of obstructive sleep apnea and hypopnea syndrome among Chinese patients. *Acta oto-laryngologica* 2016; **136**(8): 819-25.

132. Lo JC, Sim SK, Chee MW. Sleep reduces false memory in healthy older adults. *Sleep* 2014; **37**(4): 665-71, 71a.

133. Ooms S, Overeem S, Besse K, Rikkert MO, Verbeek M, Claassen JA. Effect of 1 night of total sleep deprivation on cerebrospinal fluid beta-amyloid 42 in healthy middle-aged men: a randomized clinical trial. *JAMA Neurol* 2014; **71**(8): 971-7.

134. Deliens G, Leproult R, Neu D, Peigneux P. Rapid eye movement and non-rapid eye movement sleep contributions in memory consolidation and resistance to retroactive interference for verbal material. *Sleep* 2013; **36**(12): 1875-83.

135. Mascetti L, Foret A, Schrouff J, et al. Concurrent synaptic and systems memory consolidation during sleep. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 2013; **33**(24): 10182-90.

136. Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. *Annals of internal medicine* 2012; **157**(8): 549-57.

137. Booth JN, Bromley LE, Darukhanavala AP, Whitmore HR, Imperial JG, Penev PD. Reduced physical activity in adults at risk for type 2 diabetes who curtail their sleep. *Obesity* 2012; **20**(2): 278-84.

138. Dube J, Lafortune M, Bedetti C, et al. Cortical thinning explains changes in sleep slow waves during adulthood. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 2015; **35**(20): 7795-807.

139. Ujma PP, Bodizs R, Gombos F, et al. Nap sleep spindle correlates of intelligence. *Sci Rep* 2015; 5: 17159.
140. Zanini MA, Castro J, Cunha GR, et al. Abnormalities in sleep patterns in individuals at risk for psychosis and bipolar disorder. *Schizophrenia research* 2015; 169(1-3): 262-7.

141. Hoshikawa M, Uchida S, Osawa T, et al. Effects of Five Nights under Normobaric Hypoxia on Sleep Quality. *Medicine and science in sports and exercise* 2015; **47**(7): 1512-8.

142. Smith MG, Croy I, Hammar O, Persson Waye K. Vibration from freight trains fragments sleep: A polysomnographic study. *Sci Rep* 2016; **6**: 24717.

143. Bouazizi E, Naeck R, D'Amore D, et al. Mathematical modelling of sleep fragmentation diagnosis. *Biomedical Signal Processing and Control* 2016; **24**: 83-92.

144. Dubrovsky B, Raphael KG, Lavigne GJ, et al. Polysomnographic investigation of sleep and respiratory parameters in women with temporomandibular pain disorders. *Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine* 2014; **10**(2): 195-201.

145. Glos M, Fietze I, Blau A, Baumann G, Penzel T. Cardiac autonomic modulation and sleepiness: physiological consequences of sleep deprivation due to 40 h of prolonged wakefulness. *Physiology & behavior* 2014; **125**: 45-53.

146. Wilhelm I, Kurth S, Ringli M, et al. Sleep slow-wave activity reveals developmental changes in experience-dependent plasticity. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 2014; **34**(37): 12568-75.

147. Hachul H, Andersen ML, Tufik S. Sleep quality based on the use of different sanitary pads during menstruation. *International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics* 2011; **115**(1): 57-60.

148. Biermasz NR, Joustra SD, Donga E, et al. Patients previously treated for nonfunctioning pituitary macroadenomas have disturbed sleep characteristics, circadian movement rhythm, and subjective sleep quality. *The Journal of clinical endocrinology and metabolism* 2011; **96**(5): 1524-32.

149. Donga E, van Dijk M, van Dijk JG, et al. A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. *The Journal of clinical endocrinology and metabolism* 2010; **95**(6): 2963-8.

150. Schytz HW, Jensen BE, Jennum P, Selb J, Boas DA, Ashina M. Low-frequency oscillations and vasoreactivity of cortical vessels in obstructive sleep apnea during wakefulness: a near infrared spectroscopy study. *Sleep medicine* 2013; **14**(5): 416-21.

151. Garcia CE, Drager LF, Krieger EM, et al. Arousals are frequent and associated with exacerbated blood pressure response in patients with primary hypertension. *American journal of hypertension* 2013; 26(5): 617-23.
152. Abe S, Gagnon JF, Montplaisir JY, et al. Sleep bruxism and oromandibular myoclonus in rapid eye

movement sleep behavior disorder: a preliminary report. *Sleep medicine* 2013; **14**(10): 1024-30.

153. Wuyts J, De Valck E, Vandekerckhove M, et al. Effects of pre-sleep simulated on-call instructions on subsequent sleep. *Biol Psychol* 2012; **91**(3): 383-8.

154. Montgomery-Downs HE, Insana SP, Bond JA. Movement toward a novel activity monitoring device. *Sleep* & *breathing* = *Schlaf* & *Atmung* 2012; **16**(3): 913-7.

155. Biard K, Douglass AB, De Koninck J. The effects of galantamine and buspirone on sleep structure: Implications for understanding sleep abnormalities in major depression. *Journal of psychopharmacology* 2015; **29**(10): 1106-11.

156. Guan W, Ga Q, Li R, et al. Sleep disturbances in long-term immigrants with chronic mountain sickness: a comparison with healthy immigrants at high altitude. *Respiratory physiology & neurobiology* 2015; **206**: 4-10.

157. Cepeda FX, Toschi-Dias E, Maki-Nunes C, et al. Obstructive Sleep Apnea Impairs Postexercise Sympathovagal Balance in Patients with Metabolic Syndrome. *Sleep* 2015; **38**(7): 1059-66.

158. Hudson JD, Guptill JT, Byrnes W, Yates SL, Williams P, D'Cruz O. Assessment of the effects of lacosamide on sleep parameters in healthy subjects. *Seizure : the journal of the British Epilepsy Association* 2015; **25**: 155-9.

159. Ko CH, Fang YW, Tsai LL, Hsieh S. The effect of experimental sleep fragmentation on error monitoring. *Biol Psychol* 2015; **104**: 163-72.

160. Barut BO, Tascilar N, Varo A. Sleep Disturbances in Essential Tremor and Parkinson Disease: A Polysomnographic Study. *Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine* 2015; **11**(6): 655-62.

161. Varga AW, Ducca EL, Kishi A, et al. Effects of aging on slow-wave sleep dynamics and human spatial navigational memory consolidation. *Neurobiology of aging* 2016; **42**: 142-9.

162. Landry S, Anderson C, Andrewartha P, Sasse A, Conduit R. The impact of obstructive sleep apnea on motor skill acquisition and consolidation. *Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine* 2014; **10**(5): 491-6.

163. Rao V, Bergey A, Hill H, Efron D, McCann U. Sleep disturbance after mild traumatic brain injury: indicator of injury? *The Journal of neuropsychiatry and clinical neurosciences* 2011; **23**(2): 201-5.

164. Pamidi S, Wroblewski K, Broussard J, et al. Obstructive sleep apnea in young lean men: impact on insulin sensitivity and secretion. *Diabetes care* 2012; **35**(11): 2384-9.

165. Simen AA, Ma J, Svetnik V, et al. Efavirenz modulation of sleep spindles and sleep spectral profile. *Journal of sleep research* 2015; **24**(1): 66-73.

166. Poryazova R, Huber R, Khatami R, et al. Topographic sleep EEG changes in the acute and chronic stage of hemispheric stroke. *Journal of sleep research* 2015; **24**(1): 54-65.

167. Lustenberger C, Wehrle F, Tushaus L, Achermann P, Huber R. The Multidimensional Aspects of Sleep Spindles and Their Relationship to Word-Pair Memory Consolidation. *Sleep* 2015; **38**(7): 1093-103.

168. Landry S, O'Driscoll DM, Hamilton GS, Conduit R. Overnight Motor Skill Learning Outcomes in Obstructive Sleep Apnea: Effect of Continuous Positive Airway Pressure. *Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine* 2016; **12**(5): 681-8.

169. Buchmann A, Kurth S, Ringli M, Geiger A, Jenni OG, Huber R. Anatomical markers of sleep slow wave activity derived from structural magnetic resonance images. *Journal of sleep research* 2011; **20**(4): 506-13.

170. Chennaoui M, Sauvet F, Drogou C, et al. Effect of one night of sleep loss on changes in tumor necrosis factor alpha (TNF-alpha) levels in healthy men. *Cytokine* 2011; **56**(2): 318-24.

171. Cho JR, Joo EY, Koo DL, Hong SB. Let there be no light: the effect of bedside light on sleep quality and background electroencephalographic rhythms. *Sleep medicine* 2013; **14**(12): 1422-5.

172. Westerberg CE, Mander BA, Florczak SM, et al. Concurrent impairments in sleep and memory in amnestic mild cognitive impairment. *Journal of the International Neuropsychological Society : JINS* 2012; **18**(3): 490-500.