THE LANCET Respiratory Medicine

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Boulos MI, Jairam T, Kendzerska T, Im J, Mekhael A, Murray BJ.
Normal polysomnography parameters in healthy adults: a systematic review and meta-analysis. Lancet Respir Med 2019; published online April 18. http://dx.doi. org/10.1016/S2213-2600(19)30057-8.

SUPPLEMENTARY APPENDIX

Normal Polysomnography Parameters in Healthy Adults: A Systematic Review and Meta-

Analysis
Mark I. Boulos, MD; Trevor Jairam, BMSc; Tetyana Kendzerska, MD; James Im, BMSc; Anastasia Mekhael, BSc; Brian J. Murray, MD

1. Methodological Details

Page

i. Prediction Intervals 5
ii. Mixed Effects Models 5
iii. Influence Analyses
2. Supplementary Tables
i. Table S1: Sample excluded health conditions and experimental treatments
ii. Table S2: Quality Appraisal. Values are reported as number of subjects (\% of total subjects in that row)
iii. Table S3: Prediction Intervals
A. Means and 95% prediction intervals for total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) for total sample and by age, sex and night of sleep study based on random effects models
B. Means and 95% prediction intervals for sleep onset latency (SOL), REM latency (REML), and arousal index (AI) for total sample and by age, sex and night of sleep study based on random effects models.
C. Means and 95% prediction intervals for duration of sleep stages (expressed as a percentage of total sleep time [\%TST]) for total sample and by age, sex and night of sleep study based on random effects models
D. Means and 95% prediction intervals for apnea-hypopnea index (AHI), mean and minimum arterial oxygen saturation (SaO 2), and periodic limb movement index (PLMI) for total sample and by age, sex and night of sleep study based on random effects models.
iv. Table S4: Mixed Effects Models
A. The effect of age, sex and night of sleep study on total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) based on mixed effects models
B. The effect of age, sex and night of sleep study on sleep onset latency (SOL),

REM latency (REML), and arousal index (AI) based on mixed effects models.
C. The effect age, sex and night of sleep study on duration of N1 and N2 sleep, as a percentage of total sleep time ($\% \mathrm{TST}$), based on mixed effects models.
D. The effect of age, sex and night of sleep study on duration of N3 and REM sleep, as a percentage of total sleep time (\%TST) based on mixed effects models.
E. The effect of age and sex on apnea-hypopnea index (AHI) and mean arterial oxygen saturation $(\mathrm{SaO} 2)$ based on mixed effects models.
F. The effect of age and sex on minimum arterial oxygen saturation (SaO 2) and periodic limb movement index (PLMI) based on mixed effects models.
v. Table S5: Confidence Intervals Stratified by Two Moderators
A. Mean and 95% confidence intervals for total sleep time (TST), sleep efficiency (SE), and duration of REM sleep as a percentage of total sleep time (\%TST) stratified by night of sleep study and mean age based on random effects models.
B. Mean and 95% confidence intervals for REM latency (REML) stratified by night of sleep study and sex based on random effects models.
vi. Table S6: Prediction Intervals Stratified by Two Moderators
A. Mean and 95% prediction intervals for total sleep time (TST), sleep efficiency (SE), and duration of REM sleep as a percentage of total sleep time (\%TST) stratified by night of sleep study and mean age based on random effects models.
B. Mean and 95% prediction intervals for REM latency (REML) stratified by night of sleep study and sex based on random effects models.
vii. Table S7: Changes in Sleep Parameters with Older Age Stratified by Sex
A. Change in sleep parameters (TST, SE, WASO) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95\% CI reported are based on mixed-effects models.
B. Change in sleep parameters (SOL, REML, AI) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95\% CI reported are based on mixed-effects models.
C. Change in sleep parameters (N1, N2, N3, REM) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95\% CI reported are based on mixed-effects models.
D. Change in sleep parameters (AHI, mean SaO 2, minimum SaO 2, PLMI) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95\% CI reported are based on mixed-effects models
viii. Table S8: Mixed effects models examining effect of age, sex, and night of sleep study on sleep parameters, after controlling for quality-related variables
A. Mixed effects models examining effect of age, sex, and night of sleep study on total sleep time (TST), after controlling for quality-related variables.
B. Mixed effects models examining effect of age, sex, and night of sleep study on sleep efficiency (SE), after controlling for quality-related variables.
C. Mixed effects models examining effect of age, sex, and night of sleep study on wake after sleep onset (WASO), after controlling for quality-related variables.
D. Mixed effects models examining effect of age, sex, and night of sleep study on sleep onset latency (SOL), after controlling for quality-related variables.
E. Mixed effects models examining effect of age, sex, and night of sleep study on REM latency (REML), after controlling for quality-related variables.
F. Mixed effects models examining effect of age, sex, and night of sleep study on arousal index (AI), after controlling for quality-related variables.
G. Mixed effects models examining effect of age, sex, and night of sleep study on duration of N1 sleep, as a percentage of total sleep time (\%TST), after controlling for quality-related variables.
H. Mixed effects models examining effect of age, sex, and night of sleep study on duration of N2 sleep, as a percentage of total sleep time (\%TST), after controlling for quality-related variables.
I. Mixed effects models examining effect of age, sex, and night of sleep study on duration of N3 sleep, as a percentage of total sleep time (\%TST), after controlling for quality-related variables.
J. Mixed effects models examining effect of age, sex, and night of sleep study on duration of REM sleep, as a percentage of total sleep time (\%TST), after controlling for quality-related variables.
K. Mixed effects models examining effect of age and sex on apnea-hypopnea index (AHI), after controlling for quality-related variables.
L. Mixed effects models examining effect of age and sex on mean arterial oxygen saturation (SaO 2), after controlling for quality-related variables.
M. Mixed effects models examining effect of age and sex on minimum arterial oxygen saturation $(\mathrm{SaO} 2)$, after controlling for quality-related variables.
N. Mixed effects models examining effect of age and sex on periodic limb movements index (PLMI), after controlling for quality-related variables.

ix. Table S9. Summary of findings for sleep parameters by age, sex, and night of the sleep study

3. Supplementary Figures

i. Figure S1: Forest plots showing the effect of sex on REM latency (REML)
A. Forest plot showing the effect of sex on REM latency (REML) for control groups assessed on the first night in the sleep laboratory.
B. Forest plot showing the effect of sex on REML for control groups assessed on the second night or later in the sleep laboratory.
ii. Figure S2: Forest plots showing the effect of sex on mean arterial oxygen saturation (SaO2)
A. Forest plot showing the effect of sex on mean arterial oxygen saturation $(\mathrm{SaO} 2)$
for control groups with a mean age of 18-34 years.
B. Forest plot showing the effect of sex on mean SaO 2 for control groups with a mean age of 34-49 years.
C. Forest plot showing the effect of sex on mean SaO 2 for control groups with a
mean age of 50-64 years.
D. Forest plot showing the effect of sex on mean SaO 2 for control groups with a mean age of $65+$ years.
iii. Figure S3: Forest plots showing the effect of sex on arousal index (AI)
A. Forest plot showing the effect of sex on arousal index (AI) for control groups
with a mean age of 18-34 years.
B. Forest plot showing the effect of sex on AI for control groups with a mean age of 35-49 years.
C. Forest plot showing the effect of sex on AI for control groups with a mean age of 50-64 years.
D. Forest plot showing the effect of sex on AI for control groups with a mean age of $65+$ years.
iv. Figure S4: Forest plots showing the effect of sex on apnea-hypopnea index (AHI)
A. Forest plot showing the effect of sex on apnea-hypopnea index (AHI) for control 42 groups with a mean age of 18-34 years.
B. Forest plot showing the effect of sex on AHI for control groups with a mean age of 35-49 years.
4. Table S10: Characteristics of studies included in meta-analysis. 44-60
5. References for Supplementary Appendix 61-68

1. METHODOLOGICAL DETAILS

1.1 Prediction Intervals

To address heterogeneity in sleep parameters unexplained by mean age, sex, and night of sleep study, 95% Higgins-Thompson-Spiegelhalter prediction intervals (PIs) were computed based on a Students t-distribution with $k-2$ degrees of freedom (k representing the number of studies or in this meta-analysis, the number of healthy control groups). ${ }^{1}$ We chose the Higgins PI because a t-distribution has been recommended to reduce the effect of outlying studies. ${ }^{1}$ This interval is wider than that which would be seen with a confidence interval and provides information about individual values within a random effects distribution. Confidence intervals, in contrast, strictly provide information about the mean of a random effects distribution.

The width of the Higgins-Thompson-Spiegelhalter PI is proportional to the square root of the sum of the betweenstudy variance (tau ${ }^{2}$) and square of the standard error of the pooled estimate. ${ }^{1}$ Its validity strongly depends upon approximation of a large sample ${ }^{2}$ and needs to be interpreted with caution when the number of studies is less than 20. Estimates with 95% PIs are presented below (Tables S3A-D and S6A-B).

1.2 Mixed Effects Models

Most mixed effects meta-regression models were multivariate, consisting of mean age, $\%$ male participants, and night of sleep study (first night vs. second night or later). Because most studies reporting AHI, mean SaO_{2}, minimum SaO_{2}, and PLMI were performed for a single night in the sleep laboratory, only mean age and percentage of male participants were included in these models. In addition, univariate models were also created for percentage of N1 and N2 because of non-significant omnibus tests in the multivariate models for these parameters. Finally, as mean AHI varied substantially above a mean age of 50 years and the mixed effect model was not robust, an alternative model was created exclusively for control groups with a mean age of less than 50 years.

Model coefficients provided a means of quantifying the degree to which each moderator was associated with changes in a given sleep parameter while controlling for other moderators. Omnibus tests of all model coefficients were based on a χ^{2} distribution with m degrees of freedom (m being the number of coefficients) and Q statistics were computed. ${ }^{3}$ For individual model coefficients, tests of significance were based on the normal distribution and z scores were computed. ${ }^{3}$ The amount of heterogeneity accounted by the moderators (R^{2}) was also calculated for each mixed effect model.

A secondary analysis was also performed to assess whether age-related changes in sleep parameters differed between males and females. For this analysis, control groups were stratified by sex (total, male only, and female only) and the influence of mean age was analyzed independently within each subgroup using univariate mixed effects models.

1.3 Influence Analyses

To identify particularly influential studies included in our random effects and mixed effects models, the following diagnostic values were examined: DFFITS (Difference in fits) values, Cook's distance, hat values, and DFBETAS. Influential studies were identified as studies meeting at least one of the following cut-offs defined in the "metafor" package: ${ }^{3}$ absolute DFFITS value larger than $3 \sqrt{ }(p /(k-p))$, where p is the number of model coefficients and k is the number of studies; lower tail area of a chi-square distribution with p degrees of freedom cut off by Cook's distance larger than 50%; hat value larger than $3(\mathrm{p} / \mathrm{k})$; or any DFBETAS value larger than 1 . For any attempts to stabilize models, a maximum of four studies were removed. A robust model was defined as one without any overly influential studies.

SUPPLEMENTARY TABLES

Table S1. Sample excluded health conditions and experimental treatments

Main confound	Examples
Health conditions	Cardiovascular/hematological disorders and risk factors
	- Heart failure
	- Obesity (defined as mean body mass index (BMI) > ${ }^{\text {a }}$ ($\mathrm{kg} / \mathrm{m}^{2}$)
	- Sickle cell disease
	Endocrine disorders
	- Acromegaly
	Infectious diseases
	- Tonsillitis
	Neurological conditions
	- Alzheimer's disease
	- Amyotrophic lateral sclerosis (ALS)
	- Epilepsy
	- Huntington's disease
	- Parkinson's disease
	Pulmonary disorders
	- Chronic obstructive pulmonary disease (COPD)
	Psychological conditions
	- Anxiety
	- Depression
	- Post-traumatic stress disorder
	Pregnancy
	Sleep disorders
	- Insomnia
	- Narcolepsy
	- Rapid eye movement (REM) sleep behavior disorder
	- Restless legs syndrome
	- Sleep apnea
Experimental treatments	- Drugs other than placebo
	- Hot temperatures
	- Hypoxic conditions
	- Significant noise
	- Split sleep schedules

Table S2. Quality Appraisal. Values are reported as number of subjects (\% of total subjects in that row)

	Total	Exclusion criteria stated for sleep complaints and/or disorders*	Exclusion criteria stated for medical disorders \dagger	Exclusion criteria stated for psychiatric disorders:	Recruited from population-based studies
Total sample	$\begin{aligned} & 5273 \\ & \mathrm{k}=202 \end{aligned}$	$\begin{aligned} & 3030(57 \cdot 5 \%) \\ & k=124 \end{aligned}$	$\begin{aligned} & 2331(44 \cdot 2 \%) \\ & \mathrm{k}=101 \end{aligned}$	$\begin{aligned} & 1985(37 \cdot 5 \%) \\ & \mathrm{k}=75 \end{aligned}$	$\begin{aligned} & 1230(23 \cdot 3 \%) \\ & \mathrm{k}=29 \end{aligned}$
Sample characteristic					
Mean age, years					
18-34	$\begin{aligned} & 2139 \\ & \mathrm{k}=88 \end{aligned}$	$\begin{aligned} & 1555(72 \cdot 7 \%) \\ & \mathrm{k}=70 \end{aligned}$	$\begin{aligned} & 1006(47 \cdot 0 \%) \\ & \mathrm{k}=55 \end{aligned}$	$\begin{aligned} & 814(38 \cdot 1 \%) \\ & \mathrm{k}=39 \end{aligned}$	$\begin{aligned} & 380(17 \cdot 8 \%) \\ & \mathrm{k}=7 \end{aligned}$
35-49	$\begin{aligned} & 1268 \\ & \mathrm{k}=48 \end{aligned}$	$\begin{aligned} & 566(44 \cdot 6 \%) \\ & \mathrm{k}=28 \end{aligned}$	$\begin{aligned} & 568(44 \cdot 8 \%) \\ & \mathrm{k}=25 \end{aligned}$	$\begin{aligned} & 442(34 \cdot 9 \%) \\ & \mathrm{k}=20 \end{aligned}$	$\begin{aligned} & 373(29 \cdot 4 \%) \\ & \mathrm{k}=6 \end{aligned}$
50-64	$\begin{aligned} & 1353 \\ & \mathrm{k}=41 \end{aligned}$	$\begin{aligned} & 744(55 \cdot 0 \%) \\ & \mathrm{k}=17 \end{aligned}$	$\begin{aligned} & 643(47 \cdot 5 \%) \\ & \mathrm{k}=14 \end{aligned}$	$\begin{aligned} & 604(44 \cdot 6 \%) \\ & \mathrm{k}=9 \end{aligned}$	$\begin{aligned} & 314(23 \cdot 2 \%) \\ & \mathrm{k}=7 \end{aligned}$
65-79	$\begin{aligned} & 408 \\ & \mathrm{k}=18 \end{aligned}$	$\begin{aligned} & 93(22 \cdot 8 \%) \\ & \mathrm{k}=5 \end{aligned}$	$\begin{aligned} & 29(7 \cdot 1 \%) \\ & \mathrm{k}=2 \end{aligned}$	$\begin{aligned} & 63(15 \cdot 4 \%) \\ & \mathrm{k}=4 \end{aligned}$	$\begin{aligned} & 153(37 \cdot 5 \%) \\ & \mathrm{k}=8 \end{aligned}$
80+	$\begin{aligned} & 10 \\ & \mathrm{k}=1 \end{aligned}$	$\begin{aligned} & 0(0 \cdot 0 \%) \\ & \mathrm{k}=0 \end{aligned}$	$\begin{aligned} & 0(0 \cdot 0 \%) \\ & \mathrm{k}=0 \end{aligned}$	$\begin{aligned} & 0(0 \cdot 0 \%) \\ & \mathrm{k}=0 \end{aligned}$	$\begin{aligned} & 10(100 \cdot 0 \%) \\ & \mathrm{k}=1 \end{aligned}$
Sex					
Both	$\begin{aligned} & 3417 \\ & \mathrm{k}=136 \end{aligned}$	$\begin{aligned} & 2446(71 \cdot 6 \%) \\ & \mathrm{k}=95 \end{aligned}$	$\begin{aligned} & 1822(53 \cdot 3 \%) \\ & \mathrm{k}=75 \end{aligned}$	$\begin{aligned} & 1619(47 \cdot 4 \%) \\ & \mathrm{k}=61 \end{aligned}$	$\begin{aligned} & 150(4 \cdot 4 \%) \\ & \mathrm{k}=2 \end{aligned}$
Males only	$\begin{aligned} & 939 \\ & \mathrm{k}=38 \end{aligned}$	$\begin{aligned} & 389(41 \cdot 4 \%) \\ & \mathrm{k}=19 \end{aligned}$	$\begin{aligned} & 258(27 \cdot 5 \%) \\ & \mathrm{k}=14 \end{aligned}$	$\begin{aligned} & 221(23 \cdot 5 \%) \\ & \mathrm{k}=7 \end{aligned}$	$\begin{aligned} & 506(53 \cdot 9 \%) \\ & \mathrm{k}=15 \end{aligned}$
Females only	$\begin{aligned} & 816 \\ & k=23 \end{aligned}$	$\begin{aligned} & 148(18 \cdot 1 \%) \\ & \mathrm{k}=7 \end{aligned}$	$\begin{aligned} & 185(22 \cdot 7 \%) \\ & \mathrm{k}=9 \end{aligned}$	$\begin{aligned} & 105(12 \cdot 9 \%) \\ & \mathrm{k}=5 \end{aligned}$	$\begin{aligned} & 574(70 \cdot 3 \%) \\ & \mathrm{k}=12 \end{aligned}$
Night of sleep study					
First night	$\begin{aligned} & 3053 \\ & \mathrm{k}=116 \end{aligned}$	$\begin{aligned} & 1199(39 \cdot 3 \%) \\ & \mathrm{k}=57 \end{aligned}$	$\begin{aligned} & 1137(37 \cdot 2 \%) \\ & \mathrm{k}=52 \end{aligned}$	$\begin{aligned} & 712(23 \cdot 3 \%) \\ & \mathrm{k}=33 \end{aligned}$	$\begin{aligned} & 1230(40 \cdot 3 \%) \\ & \mathrm{k}=29 \end{aligned}$
Second night or later	$\begin{aligned} & 1192 \\ & \mathrm{k}=54 \end{aligned}$	$\begin{aligned} & 1012(84 \cdot 9 \%) \\ & \mathrm{k}=45 \end{aligned}$	$\begin{aligned} & 578(48 \cdot 5 \%) \\ & \mathrm{k}=32 \end{aligned}$	$\begin{aligned} & 604(50 \cdot 7 \%) \\ & \mathrm{k}=30 \end{aligned}$	$\begin{aligned} & 0(0 \cdot 0 \%) \\ & \mathrm{k}=0 \end{aligned}$

*A study would meet our criteria for explicitly excluding subjects with sleep complaints and/or disorders if: (a) included subjects were explicitly screened using standardized questionnaires (e.g. Pittsburgh sleep quality index, Epworth sleep sleepiness), (b) included subjects were explicitly screened using a diagnostic overnight PSG, or (c) subjects with sleep complaints and/or disorders were stated to be excluded.
\dagger A study would meet our criteria for explicitly excluding subjects with medical disorders if: (a) included subjects were explicitly screened for medical illnesses (e.g. clinical examination, laboratory tests, etc.) or (b) subjects with medical illnesses were stated to be excluded.
\ddagger A study would meet our criteria for explicitly excluding subjects with psychiatric disorders if: (a) included subjects were screened using standardized procedures (e.g. structured clinical interview for DSM-V [SCID]) or (b) subjects with psychiatric disorders were stated to be excluded. Note: Excluding only one type of psychiatric disorder (e.g. anxiety) would not suffice.

Table S3A. Means and 95\% prediction intervals* for total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) for total sample and by age, sex and night of sleep study based on random effects models.

Total sample	TST, minutes	SE, \%	WASO, minutes
	$394 \cdot 6(319 \cdot 8-469 \cdot 3)$	$85 \cdot 7(75 \cdot 1-96 \cdot 3)$	$48 \cdot 2(7 \cdot 1-89 \cdot 3)$
	$\mathrm{k}=158$	$\mathrm{k}=147$	$\mathrm{k}=94$
	$\mathrm{n}=4038$	$\mathrm{n}=4217$	$\mathrm{n}=2757$
	$\mathrm{I}^{2}=98 \cdot 3 \%$	$\mathrm{I}^{2}=94 \cdot 0 \%$	$\mathrm{I}^{2}=94 \cdot 8$
Sample characteristic			
Mean age, years			
18-34	$410 \cdot 6(360 \cdot 8-460-3)$	$89 \cdot 0(81 \cdot 6-96 \cdot 4)$	$32 \cdot 1(8 \cdot 3-55 \cdot 9)$
	$\mathrm{k}=76$	$\mathrm{k}=65$	$\mathrm{k}=42$
	$\mathrm{n}=1815$	$\mathrm{n}=1635$	$\mathrm{n}=1226$
35-49	$386 \cdot 6(298 \cdot 2-475 \cdot 0)$	$85 \cdot 4(75 \cdot 6-95 \cdot 2)$	$51 \cdot 1(2 \cdot 2-100 \cdot 0)$
	$\mathrm{k}=32$	$\mathrm{k}=35$	$\mathrm{k}=22$
	$\mathrm{n}=955$	$\mathrm{n}=1040$	$\mathrm{n}=728$
50-64	$372 \cdot 0(301 \cdot 0-442 \cdot 9)$	$83 \cdot 2(71 \cdot 6-94 \cdot 9)$	$64 \cdot 0(26 \cdot 7-101 \cdot 3)$
	$\mathrm{k}=26$	$\mathrm{k}=27$	$\mathrm{k}=17$
	$\mathrm{n}=712$	$\mathrm{n}=1099$	$\mathrm{n}=547$
65-79	$346 \cdot 0(262 \cdot 8-429 \cdot 3)$	$77 \cdot 5$ (58-3-96-6)	$77 \cdot 1(-1 \cdot 4-155 \cdot 6)$
	$\mathrm{k}=17$	$\mathrm{k}=16$	$\mathrm{k}=12$
	$\mathrm{n}=399$	$\mathrm{n}=386$	$\mathrm{n}=185$
80+	-	-	-
Sex			
Both	$405 \cdot 2(343 \cdot 4-467 \cdot 0)$	$86 \cdot 7(76 \cdot 2-97 \cdot 1)$	$43 \cdot 3(3 \cdot 6-83 \cdot 1)$
	$\mathrm{k}=101$	$\mathrm{k}=96$	$\mathrm{k}=56$
	$\mathrm{n}=2286$	$\mathrm{n}=2695$	$\mathrm{n}=1494$
Males only	$374 \cdot 6(277 \cdot 0-472 \cdot 2)$	$84 \cdot 3(72 \cdot 3-96 \cdot 3)$	$51 \cdot 8(7 \cdot 0-96 \cdot 5)$
	$\mathrm{k}=30$	$\mathrm{k}=27$	$\mathrm{k}=20$
	$\mathrm{n}=786$	$\mathrm{n}=678$	$\mathrm{n}=587$
Females only			
	$\mathrm{k}=19$	$\mathrm{k}=20$	$\mathrm{k}=17$
	$\mathrm{n}=748$	$\mathrm{n}=768$	$\mathrm{n}=668$
Night of sleep study			
First night	$371 \cdot 7(281 \cdot 8-461 \cdot 3)$	$84 \cdot 2(73 \cdot 7-94 \cdot 6)$	$52 \cdot 7(8 \cdot 3-97 \cdot 1)$
	$\mathrm{k}=89$	$\mathrm{k}=88$	$\mathrm{k}=57$
	$\mathrm{n}=2447$	$\mathrm{n}=2491$	$\mathrm{n}=1895$
Second night or later	$419 \cdot 7(368 \cdot 1-471 \cdot 4)$	$89 \cdot 3(81 \cdot 9-96 \cdot 6)$	$37 \cdot 9(0 \cdot 0-75 \cdot 7)$
	$\mathrm{k}=48$	$\mathrm{k}=39$	$\mathrm{k}=26$
	$\mathrm{n}=1092$	$\mathrm{n}=942$	$\mathrm{n}=674$

Note: "k" represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. " n " represents the total number of individuals included.
*Higgins 95% prediction intervals were calculated based on a t-distribution with k-2 degrees of freedom. ${ }^{1}$ The validity of this metric strongly depends upon approximation using a large sample size and needs to be interpreted with caution when $\mathrm{k}<20$; this explains why the lower bound of some prediction intervals are less than 0 . We do not report data where $\mathrm{k}<10$.

Table S3B. Means and 95\% prediction intervals* for sleep onset latency (SOL), REM latency (REML), and arousal index (AI) for total sample and by age, sex and night of sleep study based on random effects models.

Total sample	$\begin{aligned} & \text { SOL, minutes } \\ & 15 \cdot 4(3 \cdot 2-27 \cdot 6) \\ & \mathrm{k}=124 \\ & \mathrm{n}=3828 \\ & \mathrm{I}^{2}=91 \cdot 9 \end{aligned}$	$\begin{aligned} & \text { REML, minutes } \\ & 97 \cdot 4(70 \cdot 9-123 \cdot 8) \\ & \mathrm{k}=89 \\ & \mathrm{n}=2859 \\ & \mathrm{I}^{2}=81 \cdot 6 \end{aligned}$	$\begin{aligned} & \text { AI, events/h } \\ & 12 \cdot 6(6 \cdot 1-19 \cdot 1) \\ & \mathrm{k}=89 \\ & \mathrm{n}=2847 \\ & \mathrm{I}^{2}=94 \cdot 2 \end{aligned}$
Sample characteristic			
Mean age, years			
18-34	$\begin{aligned} & 14 \cdot 3(2 \cdot 1-26 \cdot 5) \\ & \mathrm{k}=58 \\ & \mathrm{n}=1517 \end{aligned}$	$\begin{aligned} & 96 \cdot 4(65 \cdot 5-127 \cdot 3) \\ & k=42 \\ & n=1195 \end{aligned}$	$\begin{aligned} & 9 \cdot 6(5 \cdot 2-14 \cdot 1) \\ & k=32 \\ & n=984 \end{aligned}$
35-49	$\begin{aligned} & 14 \cdot 4(4 \cdot 5-24 \cdot 3) \\ & \mathrm{k}=25 \\ & \mathrm{n}=856 \end{aligned}$	$\begin{aligned} & 93 \cdot 4(77 \cdot 5-109 \cdot 4) \\ & \mathrm{k}=18 \\ & \mathrm{n}=644 \end{aligned}$	$\begin{aligned} & 12 \cdot 5(3 \cdot 3-21 \cdot 6) \\ & \mathrm{k}=25 \\ & \mathrm{n}=827 \end{aligned}$
50-64	$\begin{aligned} & 15 \cdot 7(7 \cdot 5-24 \cdot 0) \\ & \mathrm{k}=19 \\ & \mathrm{n}=930 \end{aligned}$	$\begin{aligned} & 101 \cdot 3(73 \cdot 2-129 \cdot 3) \\ & \mathrm{k}=14 \\ & \mathrm{n}=702 \end{aligned}$	$\begin{aligned} & 16 \cdot 5(10 \cdot 0-23 \cdot 1) \\ & k=19 \\ & n=800 \end{aligned}$
65-79	$\begin{aligned} & 19 \cdot 5(3 \cdot 2-35 \cdot 9) \\ & \mathrm{k}=16 \\ & \mathrm{n}=340 \end{aligned}$	$\begin{aligned} & 99 \cdot 7(55 \cdot 2-144 \cdot 2) \\ & k=11 \\ & n=243 \end{aligned}$	-
80+	-	-	-
Sex			
Both	$\begin{aligned} & 15 \cdot 4(2 \cdot 2-28 \cdot 6) \\ & \mathrm{k}=76 \\ & \mathrm{n}=2301 \end{aligned}$	$\begin{aligned} & 96 \cdot 7(80 \cdot 2-113 \cdot 3) \\ & k=44 \\ & n=1369 \end{aligned}$	$\begin{aligned} & 11 \cdot 3(4 \cdot 3-18 \cdot 3) \\ & \mathrm{k}=47 \\ & \mathrm{n}=1424 \end{aligned}$
Males only	$\begin{aligned} & 14 \cdot 7(8 \cdot 3-21 \cdot 1) \\ & \mathrm{k}=25 \\ & \mathrm{n}=647 \end{aligned}$	$\begin{aligned} & 92 \cdot 5(64 \cdot 1-121 \cdot 0) \\ & \mathrm{k}=24 \\ & \mathrm{n}=687 \end{aligned}$	$\begin{aligned} & 14 \cdot 5(6 \cdot 3-22 \cdot 8) \\ & \mathrm{k}=20 \\ & \mathrm{n}=573 \end{aligned}$
Females only	$\begin{aligned} & 13 \cdot 5(7 \cdot 5-19 \cdot 4) \\ & \mathrm{k}=20 \\ & \mathrm{n}=768 \end{aligned}$	$\begin{aligned} & 99 \cdot 5(86 \cdot 6-112 \cdot 5) \\ & k=20 \\ & n=768 \end{aligned}$	$\begin{aligned} & 12 \cdot 7(6 \cdot 1-19 \cdot 3) \\ & \mathrm{k}=15 \\ & \mathrm{n}=596 \end{aligned}$
Night of sleep study			
First night	$\begin{aligned} & 14 \cdot 7(5 \cdot 0-24 \cdot 4) \\ & \mathrm{k}=68 \\ & \mathrm{n}=2048 \end{aligned}$	$\begin{aligned} & 99 \cdot 5(83 \cdot 9-115 \cdot 0) \\ & k=49 \\ & n=1487 \end{aligned}$	$\begin{aligned} & 13 \cdot 5(6 \cdot 1-21 \cdot 0) \\ & \mathrm{k}=62 \\ & \mathrm{n}=1751 \end{aligned}$
Second night or later	$\begin{aligned} & 14 \cdot 4(2 \cdot 4-26 \cdot 3) \\ & \mathrm{k}=41 \\ & \mathrm{n}=966 \\ & \hline \end{aligned}$	$\begin{aligned} & 87 \cdot 3(65 \cdot 9-108 \cdot 7) \\ & \mathrm{k}=28 \\ & \mathrm{n}=510 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \cdot 6(3 \cdot 5-15 \cdot 7) \\ & k=14 \\ & n=435 \end{aligned}$

Note: "k" represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. " n " represents the total number of individuals included.
*Higgins 95% prediction intervals were calculated based on a t-distribution with k-2 degrees of freedom. ${ }^{1}$ The validity of this metric strongly depends upon approximation using a large sample size and needs to be interpreted with caution when $\mathrm{k}<20$; this explains why the lower bound of some prediction intervals are less than 0 . We do not report data where $\mathrm{k}<10$.

Table S3C. Means and 95% prediction intervals* for duration of sleep stages (expressed as a percentage of total sleep time [\%TST]) for total sample and by age, sex and night of sleep study based on random effects models.

Total sample	N1, \%TST	N2, \%TST	N3, \%TST	REM, \%TST
	$7 \cdot 9(2 \cdot 1-13 \cdot 7)$	51-4 (39.7-63-2)	$20 \cdot 4(6 \cdot 4-34 \cdot 4)$	$19 \cdot 0(13 \cdot 7-24 \cdot 4)$
	$\mathrm{k}=104$	$\mathrm{k}=104$	$\mathrm{k}=107$	$\mathrm{k}=108$
	$\mathrm{n}=2940$	$\mathrm{n}=2940$	$\mathrm{n}=2995$	$\mathrm{n}=3012$
	$\mathrm{I}^{2}=95 \cdot 4$	$\mathrm{I}^{2}=93 \cdot 2$	$\mathrm{I}^{2}=96 \cdot 5$	$\mathrm{I}^{2}=87 \cdot 7$
Sample characteristic				
Mean age, years				
18-34	$6 \cdot 0(1 \cdot 8-10 \cdot 2)$	$51 \cdot 3(41 \cdot 3-61 \cdot 2)$	$21 \cdot 4(12 \cdot 7-30 \cdot 2)$	$19 \cdot 8(13 \cdot 7-26 \cdot 0)$
	$\mathrm{k}=38$	$\mathrm{k}=39$	$\mathrm{k}=42$	$\mathrm{k}=44$
	$\mathrm{n}=871$	$\mathrm{n}=886$	$\mathrm{n}=937$	$\mathrm{n}=958$
35-49	$8 \cdot 0(2 \cdot 4-13 \cdot 6)$	$52 \cdot 2(44 \cdot 7-59 \cdot 7)$	$20 \cdot 4(11 \cdot 5-29 \cdot 2)$	$19 \cdot 3(14 \cdot 2-24 \cdot 3)$
	$\mathrm{k}=23$	$\mathrm{k}=24$	$\mathrm{k}=23$	$\mathrm{k}=24$
	$\mathrm{n}=750$	$\mathrm{n}=794$	$\mathrm{n}=774$	$\mathrm{n}=776$
50-64	$8 \cdot 7(2 \cdot 3-15 \cdot 1)$	$52 \cdot 8(38 \cdot 1-67 \cdot 5)$	18.1(2.5-33•7)	$18 \cdot 7(14 \cdot 6-22 \cdot 7)$
	$\begin{aligned} & \mathrm{k}=22 \\ & \mathrm{n}=876 \end{aligned}$	$\begin{aligned} & \mathrm{k}=22 \\ & \mathrm{n}=876 \end{aligned}$	$\begin{aligned} & \mathrm{k}=23 \\ & \mathrm{n}=896 \end{aligned}$	$\begin{aligned} & \mathrm{k}=23 \\ & \mathrm{n}=896 \end{aligned}$
65-79	$9 \cdot 3(0 \cdot 7-17 \cdot 9)$	$53 \cdot 3(41 \cdot 7-65 \cdot 0)$	$19 \cdot 9(13 \cdot 1-26 \cdot 8)$	$17 \cdot 7(16 \cdot 7-18 \cdot 7)$
	$\mathrm{k}=11$	$\mathrm{k}=11$	$\mathrm{k}=11$	$\mathrm{k}=10$
	$\mathrm{n}=256$	$\mathrm{n}=256$	$\mathrm{n}=256$	$\mathrm{n}=221$
80+	-	-	-	-
Sex				
Both	$9 \cdot 7(2 \cdot 7-16 \cdot 6)$	$50 \cdot 6(36 \cdot 0-65 \cdot 2)$	$19 \cdot 5(4 \cdot 3-34 \cdot 6)$	$19 \cdot 2(14 \cdot 1-24 \cdot 3)$
	$\mathrm{k}=59$	$\mathrm{k}=59$	$\mathrm{k}=62$	$\mathrm{k}=63$
	$\mathrm{n}=1533$	$\mathrm{n}=1533$	$\mathrm{n}=1588$	$\mathrm{n}=1576$
Males only	$5 \cdot 3(1 \cdot 5-9 \cdot 1)$	$52 \cdot 1(43 \cdot 2-60 \cdot 9)$	$21 \cdot 0(14 \cdot 0-27 \cdot 9)$	$19 \cdot 9(13 \cdot 3-26 \cdot 4)$
	$\mathrm{k}=23$	$\mathrm{k}=24$	$\mathrm{k}=24$	$\mathrm{k}=24$
	$\mathrm{n}=609$	$\mathrm{n}=617$	$\mathrm{n}=617$	$\mathrm{n}=627$
Females only	$4 \cdot 2(1 \cdot 9-6 \cdot 4)$	$55 \cdot 1(51 \cdot 0-59 \cdot 2)$	$22 \cdot 1(16 \cdot 9-27 \cdot 3)$	$18 \cdot 6(16 \cdot 0-21 \cdot 2)$
	$\mathrm{k}=16$	$\mathrm{k}=16$	$\mathrm{k}=17$	$\mathrm{k}=17$
	$\mathrm{n}=662$	$\mathrm{n}=688$	$\mathrm{n}=708$	$\mathrm{n}=708$
Night of sleep study				
First night	$7 \cdot 0(2 \cdot 9-11 \cdot 1)$	$52 \cdot 1(42 \cdot 4-61 \cdot 8)$	$20 \cdot 7(12 \cdot 4-29 \cdot 0)$	$18 \cdot 3(14 \cdot 6-21 \cdot 9)$
	$\mathrm{k}=63$	$k=69$	$k=69$	$\mathrm{k}=68$
	$\mathrm{n}=1734$	$\mathrm{n}=1916$	$\mathrm{n}=1907$	$\mathrm{n}=1870$
Second night or later	$6 \cdot 9(0 \cdot 4-13 \cdot 5)$	$48 \cdot 2(35 \cdot 5-60 \cdot 9)$	$22 \cdot 3(1 \cdot 9-42 \cdot 8)$	$21 \cdot 4(14 \cdot 5-28 \cdot 2)$
	$\mathrm{k}=23$	$\mathrm{k}=24$	$\mathrm{k}=25$	$\mathrm{k}=26$
	$\mathrm{n}=426$	$\mathrm{n}=457$	$\mathrm{n}=469$	$\mathrm{n}=476$

Note: " k " represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. " n " represents the total number of individuals included.
*Higgins 95% prediction intervals were calculated based on a t-distribution with k-2 degrees of freedom. ${ }^{1}$ The validity of this metric strongly depends upon approximation using a large sample size and needs to be interpreted with caution when $\mathrm{k}<20$; this explains why the lower bound of some prediction intervals are less than 0 . We do not report data where $\mathrm{k}<10$.

Table S3D. Means and 95\% prediction intervals* for apnea-hypopnea index (AHI), mean and minimum arterial oxygen saturation (SaO_{2}), and periodic limb movement index (PLMI) for total sample and by age, sex and night of sleep study based on random effects models.

Total sample	$\begin{aligned} & \text { AHI, events/h } \\ & 2 \cdot 9(0 \cdot 7 \cdot 5 \cdot 0) \\ & \mathrm{k}=99 \\ & \mathrm{n}=3229 \\ & \mathrm{I}^{2}=95 \cdot 7 \end{aligned}$	$\begin{aligned} & \text { Mean } \mathbf{S a O}_{2}, \mathbf{\%} \\ & 95 \cdot 0(93 \cdot 0-97 \cdot 0) \\ & \mathrm{k}=48 \\ & \mathrm{n}=1512 \\ & \mathrm{I}^{2}=95 \cdot 2 \end{aligned}$	$\begin{aligned} & \text { Minimum SaO } \mathbf{2}, \mathbf{\%} \\ & 89 \cdot 2(84 \cdot 3-94 \cdot 1) \\ & \mathrm{k}=58 \\ & \mathrm{n}=2004 \\ & \mathrm{I}^{2}=97 \cdot 9 \end{aligned}$	$\begin{aligned} & \text { PLMI, events/h } \\ & 2 \cdot 5(0 \cdot 6-4 \cdot 4) \\ & \mathrm{k}=58 \\ & \mathrm{n}=2198 \\ & \mathrm{I}^{2}=90 \cdot 2 \end{aligned}$
Sample characteristic				
Mean age, years				
18-34	$\begin{aligned} & 1 \cdot 6(-0 \cdot 2-3 \cdot 4) \\ & \mathrm{k}=28 \\ & \mathrm{n}=1039 \end{aligned}$	$\begin{aligned} & 96 \cdot 2(95 \cdot 0-97 \cdot 4) \\ & k=15 \\ & n=540 \end{aligned}$	$\begin{aligned} & 91 \cdot 8(91 \cdot 3-92 \cdot 3) \\ & \mathrm{k}=17 \\ & \mathrm{n}=569 \end{aligned}$	$\begin{aligned} & 1.1 \quad(-0 \cdot 2-2 \cdot 4) \\ & \mathrm{k}=11 \\ & \mathrm{n}=411 \end{aligned}$
35-49	$\begin{aligned} & 3 \cdot 1(0 \cdot 2-6 \cdot 0) \\ & k=28 \\ & n=836 \end{aligned}$	$\begin{aligned} & 95 \cdot 3(93 \cdot 3-97 \cdot 3) \\ & k=13 \\ & n=532 \end{aligned}$	$\begin{aligned} & 90 \cdot 5(84 \cdot 8-96 \cdot 2) \\ & \mathrm{k}=19 \\ & \mathrm{n}=622 \end{aligned}$	$\begin{aligned} & 3 \cdot 1(-0 \cdot 9-7 \cdot 0) \\ & \mathrm{k}=14 \\ & \mathrm{n}=600 \end{aligned}$
50-64	$\begin{aligned} & 4 \cdot 2(1 \cdot 5-6 \cdot 8) \\ & \mathrm{k}=28 \\ & \mathrm{n}=1054 \end{aligned}$	$\begin{aligned} & 94 \cdot 3(93 \cdot 0-95 \cdot 7) \\ & k=11 \\ & n=292 \end{aligned}$	$\begin{aligned} & 87 \cdot 0(78 \cdot 1-95 \cdot 9) \\ & \mathrm{k}=12 \\ & \mathrm{n}=648 \end{aligned}$	$\begin{aligned} & 6 \cdot 2(-0 \cdot 8-13 \cdot 2) \\ & \mathrm{k}=13 \\ & \mathrm{n}=628 \end{aligned}$
65-79	$\begin{aligned} & 15 \cdot 5(9 \cdot 8-21 \cdot 3) \\ & \mathrm{k}=10 \\ & \mathrm{n}=211 \end{aligned}$	-	-	-
80+	-	-	-	-
Sex				
Both	$\begin{aligned} & 2 \cdot 2(0 \cdot 2-4 \cdot 2) \\ & \mathrm{k}=54 \\ & \mathrm{n}=1698 \end{aligned}$	$\begin{aligned} & 95 \cdot 4(93 \cdot 0-97 \cdot 7) \\ & k=14 \\ & n=324 \end{aligned}$	$\begin{aligned} & 91 \cdot 7(88 \cdot 3-95 \cdot 0) \\ & \mathrm{k}=21 \\ & \mathrm{n}=746 \end{aligned}$	$\begin{aligned} & 4 \cdot 4(0 \cdot 3-8 \cdot 5) \\ & k=26 \\ & n=981 \end{aligned}$
Males only	$\begin{aligned} & 5 \cdot 2(1 \cdot 4-8 \cdot 9) \\ & \mathrm{k}=23 \\ & \mathrm{n}=673 \end{aligned}$	$\begin{aligned} & 94 \cdot 7(92 \cdot 9-96 \cdot 5) \\ & \mathrm{k}=18 \\ & \mathrm{n}=566 \end{aligned}$	$\begin{aligned} & 87 \cdot 9(82 \cdot 0-93 \cdot 7) \\ & \mathrm{k}=19 \\ & \mathrm{n}=586 \end{aligned}$	$\begin{aligned} & 2 \cdot 1(-0 \cdot 5-4 \cdot 7) \\ & \mathrm{k}=16 \\ & \mathrm{n}=439 \end{aligned}$
Females only	$\begin{aligned} & 3 \cdot 1(0 \cdot 6-5 \cdot 6) \\ & k=16 \\ & n=668 \end{aligned}$	$\begin{aligned} & 95 \cdot 0(92 \cdot 7-97 \cdot 4) \\ & \mathrm{k}=14 \\ & \mathrm{n}=605 \end{aligned}$	$\begin{aligned} & 87 \cdot 6(81 \cdot 0-94 \cdot 2) \\ & \mathrm{k}=14 \\ & \mathrm{n}=605 \end{aligned}$	$\begin{aligned} & 2 \cdot 1(0 \cdot 1-4 \cdot 1) \\ & \mathrm{k}=15 \\ & \mathrm{n}=659 \end{aligned}$
Night of sleep study				
First night	$\begin{aligned} & 3 \cdot 4(1 \cdot 0-5 \cdot 8) \\ & \mathrm{k}=72 \\ & \mathrm{n}=2184 \end{aligned}$	$\begin{aligned} & 95 \cdot 0(92 \cdot 9-97 \cdot 1) \\ & \mathrm{k}=40 \\ & \mathrm{n}=1392 \end{aligned}$	$\begin{aligned} & 89 \cdot 0(83 \cdot 3-94 \cdot 6) \\ & k=49 \\ & \mathrm{n}=1518 \end{aligned}$	$\begin{aligned} & 2 \cdot 2(0 \cdot 6-3 \cdot 9) \\ & k=45 \\ & n=1507 \end{aligned}$
Second night or later	-	-	-	-

Note: " k " represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. " n " represents the total number of individuals included.
*Higgins 95% prediction intervals were calculated based on a t-distribution with k-2 degrees of freedom. ${ }^{1}$ The validity of this metric strongly depends upon approximation using a large sample size and needs to be interpreted with caution when $\mathrm{k}<20$; this explains why the lower bound of some prediction intervals are less than 0 . We do not report data where $\mathrm{k}<10$.

Table S4A. The effect of age, sex and night of sleep study on total sleep time (TST), sleep efficiency (SE), and wake after sleep onset (WASO) based on mixed effects models.

		Mixed effect model		
		Estimate	95\% Cl	p
TST, minutes	Omnibus test			$<\cdot 0001$
$\mathrm{R}^{2}=70 \cdot 67$	(Intercept)	414.06	$339 \cdot 1-429 \cdot 0$	$<\cdot 0001$
	Mean age, years	$-1 \cdot 01$	$-1 \cdot 28--0.75$	$<\cdot 0001$
	Sex, \% male	$0 \cdot 03$	$-0 \cdot 10-0 \cdot 16$	$\cdot 66$
	Night of sleep study (second night or later)	$38 \cdot 30$	$29 \cdot 44-47 \cdot 16$	$<\cdot 0001$
SE, \%	Omnibus test			$<\cdot 0001$
$\begin{aligned} & \mathrm{k}=122 \\ & \mathrm{R}^{2}=29 \cdot 48 \end{aligned}$	(Intercept)	93.92	90.97-96.87	$<\cdot 0001$
	Mean age, years	-0.21	$-0 \cdot 26--0 \cdot 15$	$<\cdot 0001$
	Sex, \% male	-0.01	-0.04-0.01	$\cdot 30$
	Night of sleep study (second night or later)	$2 \cdot 65$	$0 \cdot 86-4 \cdot 44$	0.0037
WASO, minutes$\begin{aligned} & \mathrm{k}=82 \\ & \mathrm{R}^{2}=24 \cdot 07 \end{aligned}$	Omnibus test			$<\cdot 0001$
	(Intercept)	$11 \cdot 44$	$-3 \cdot 33-26 \cdot 21$	$\cdot 13$
	Mean age, years	0.97	$0 \cdot 69-1 \cdot 24$	$<\cdot 0001$
	Sex, \% male	$0 \cdot 00$	$-0 \cdot 12-0 \cdot 12$	$\cdot 94$
	Night of sleep study (second night or later)	-5.59	-14.92-3.75	$\cdot 24$

Bold values indicate $\mathrm{p}<0 \cdot 05$.

Table S4B. The effect of age, sex and night of sleep study on sleep onset latency (SOL), REM latency (REML), and arousal index (AI) based on mixed effects models.

		Mixed effect model		
		Estimate	95\% Cl	p
$\begin{aligned} & \begin{array}{l} \text { SOL, } \boldsymbol{m i n} \\ k=107 \\ \mathrm{R}^{2}=30 \cdot 98 \end{array} \end{aligned}$	Omnibus test			- 026
	(Intercept)	$9 \cdot 87$	$5 \cdot 62-14 \cdot 12$	$<\cdot 0001$
	Mean age, years	$0 \cdot 11$	$0 \cdot 03-0 \cdot 19$	$\cdot 0051$
	Sex, \% male	$0 \cdot 02$	$-0.02-0.05$	$\cdot 34$
	Night of sleep study (second night or later)	-0.15	$-2 \cdot 70-2 \cdot 41$. 91
$\begin{aligned} & \text { REML, min } \\ & \mathrm{k}=75 \\ & \mathrm{R}^{2}=39 \cdot 52 \end{aligned}$	Omnibus test			$\cdot 00031$
	(Intercept)	$104 \cdot 55$	$92 \cdot 96-116 \cdot 15$	$<\cdot 0001$
	Mean age, years	$0 \cdot 01$	$-0 \cdot 22-0 \cdot 25$. 90
$\begin{aligned} & \text { AI, events/h } \\ & \mathrm{k}=73 \\ & \mathrm{R}^{2}=0 \cdot 00 \end{aligned}$	Sex, \% male	-0.09	-0.16--0.01	$\cdot 027$
	Night of sleep study (second night or later)	$-11 \cdot 14$	$-17 \cdot 87-4 \cdot 42$	$\cdot 0012$
	Omnibus test			$<\cdot 0001$
	(Intercept)	$3 \cdot 58$	$-0 \cdot 66-6 \cdot 50$	- 016
	Mean age, years	$0 \cdot 21$	$0 \cdot 15-0 \cdot 26$	$<\cdot 0001$
	Sex, \% male	0.03	$0 \cdot 00-0 \cdot 05$	$\cdot 029$
	Night of sleep study (second night or later)	$-1 \cdot 60$	$-3 \cdot 87-0.68$	$\cdot 17$

Bold values indicate $\mathrm{p}<0.05$.

Table S4C. The effect age, sex and night of sleep study on duration of N 1 and $\mathbf{N} 2$ sleep, as a percentage of total sleep time (\%TST), based on mixed effects models.

		Mixed effects model 1 Multivariate (age, sex, night of study)			Mixed effects model 2 Univariate* (only age or night of study)		
		Estimate	Cl	p	Estimate	Cl	p
N1, \%TST	Omnibus test			- 05			- 0018
Model 1	(Intercept)	4.95	$3 \cdot 04$ -	$<\cdot 0001$	$5 \cdot 05$	$3 \cdot 51$ -	$<\cdot 0001$
$\mathrm{k}=82$			$6 \cdot 86$			$6 \cdot 58$	
$\mathrm{R}^{2}=4 \cdot 30$							
	Mean age, years	$0 \cdot 05$	0.01-	$\cdot 0069$	$0 \cdot 05$	0.02-	$\cdot 0018$
Model 2			0.08			$0 \cdot 09$	
$\begin{aligned} & \mathrm{k}=84 \\ & \mathrm{R}^{2}=10 \cdot 83 \end{aligned}$	Sex, \% male	$0 \cdot 00$	-0.01 -	$0 \cdot 57$			
			0.02				
	Night of sleep study (second night or later)	$0 \cdot 68$	$\begin{aligned} & -0 \cdot 70- \\ & 2 \cdot 05 \end{aligned}$	$0 \cdot 34$			
$\mathrm{N} 2, \% \mathrm{TST}$ Model 1 $\begin{aligned} & \mathrm{k}=84 \\ & \mathrm{R}^{2}=2 \cdot 79 \end{aligned}$	Omnibus test			- 07			- 0051
	(Intercept)	$52 \cdot 6$	$48 \cdot 86$ -	$<\cdot 0001$	52.08	$50 \cdot 82-$	$<\cdot 0001$
			$56 \cdot 32$			$53 \cdot 34$	
	Mean age, years	$0 \cdot 00$	-0.06 -	. 90			
Model 2$\begin{aligned} & \mathrm{k}=91 \\ & \mathrm{R}^{2}=7 \cdot 59 \end{aligned}$			$0 \cdot 07$				
	Sex, \% male	-0.01	$\begin{aligned} & -0 \cdot 04- \\ & 0 \cdot 03 \end{aligned}$	$\cdot 71$			
	Night of sleep study (second night or later)	-3.44	$\begin{aligned} & -6 \cdot 18- \\ & -0 \cdot 70 \end{aligned}$. 014	-3•66	$\begin{aligned} & -6 \cdot 23- \\ & -1 \cdot 10 \\ & \hline \end{aligned}$. 0051

*Univariate models (incorporating only age or night of study) were created for percentage of N1 and N2 because of non-significant omnibus tests in the multivariate models for these parameters, which indicated statistically insignificant multivariate models.

Bold values indicate $\mathrm{p}<0 \cdot 05$.

Table S4D. The effect of age, sex and night of sleep study on duration of N3 and REM sleep, as a percentage of total sleep time (\%TST) based on mixed effects models.

		Mixed effect model		
		Estimate	95\% Cl	p
N3, \%TST	Omnibus test			$\cdot 15$
$\mathrm{R}^{2}=6.09$	(Intercept)	$23 \cdot 75$	$20 \cdot 40-27 \cdot 10$	$<\cdot 0001$
	Mean age, years	-0.06	$-0 \cdot 12-0 \cdot 01$	-08
	Sex, \% male	-0.02	$-0.04-0.01$	$\cdot 30$
	Night of sleep study (second night or later)	$0 \cdot 74$	$-1 \cdot 74-3 \cdot 22$	$\cdot 56$
REM, \%	Omnibus test			$<\cdot 0001$
$\mathrm{R}^{2}=38.99$	(Intercept)	$18 \cdot 68$	$17 \cdot 02-20 \cdot 34$	$<\cdot 0001$
	Mean age, years	-0.03	$-0.06-0.00$	-08
	Sex, \% male	$0 \cdot 01$	$0 \cdot 00-0.03$	$\cdot 11$
	Night of sleep study (second night or later)	$3 \cdot 52$	$2 \cdot 32-4 \cdot 72$	$<\cdot 0001$

Bold values indicate $\mathrm{p}<0 \cdot 05$.

Table S4E. The effect of age and sex on apnea-hypopnea index (AHI) and mean arterial oxygen saturation $\left(\mathrm{SaO}_{2}\right)$ based on mixed effects models.

		Mixed effect model All ages			Mixed effect model 2 Mean age < 50 years*		
		Estimate	95\% Cl	p	Estimate	95\% Cl	p
AHI, events/h Model 1 $\begin{aligned} & \mathrm{k}=93 \\ & \mathrm{R}^{2}=0 \cdot 00 \end{aligned}$	Omnibus test			<-0001			<-0001
	(Intercept)	-2•61	$3 \cdot 68-1 \cdot 53$	<-0001	$-1 \cdot 74$	-3•11 -	- 013
						-0.37	
	Mean age, years	$0 \cdot 12$	$0 \cdot 09-0 \cdot 14$	$<\cdot 0001$	$0 \cdot 09$	$0 \cdot 05-$	$<\cdot 0001$
$\begin{aligned} & \text { Model } 2 \\ & \mathrm{k}=52 \\ & \mathrm{R}^{2}=0 \cdot 00 \end{aligned}$						$0 \cdot 13$	
	Sex, \% male	$0 \cdot 02$	$0 \cdot 01-0 \cdot 03$	-00043	$0 \cdot 02$	0.01 -	$\cdot 00030$
						0.03	
$\begin{aligned} & \text { Mean } \mathbf{S a O}_{\mathbf{2}}, \mathbf{\%} \\ & \mathrm{k}=46 \\ & \mathrm{R}^{2}=83 \cdot 17 \end{aligned}$	Omnibus test			$<\cdot 0001$			
	(Intercept)	98•16	$97 \cdot 69$ -	<-0001			
			$98 \cdot 64$				
	Mean age, years	-0.06	-0.07--	$<\cdot 0001$			
			0.05				
	Sex, \% male	-0.01	-0.01-	$\cdot 0017$			
			$0 \cdot 00$				

*As the mean AHI varied substantially above a mean age of 50 years and the mixed effect model was not robust, an alternative model was created exclusively for control groups with a mean age of less than 50 years.

Bold values indicate $\mathrm{p}<0.05$.

Table S 4 F . The effect of age and sex on minimum arterial oxygen saturation (SaO_{2}) and periodic limb movement index (PLMI) based on mixed effects models.

$\begin{aligned} & \text { Minimum } \mathbf{S a O}_{\mathbf{2}}, \mathbf{\%} \\ & \mathrm{k}=53 \\ & \mathrm{R}^{2}=0 \cdot 00 \end{aligned}$	Omnibus test (Intercept)	Mixed effect model		
		Estimate	95\% Cl	p
				$<\cdot 0001$
		$97 \cdot 60$	94.92-100.27	$<\cdot 0001$
	Mean age, years	-0.18	$-0 \cdot 23--0 \cdot 13$	$<\cdot 0001$
	Sex, \% male	-0.01	$-0 \cdot 03-0 \cdot 01$	$\cdot 54$
$\begin{aligned} & \text { PLMI, events/h } \\ & \mathrm{k}=50 \\ & \mathrm{R}^{2}=13 \cdot 21 \end{aligned}$	Omnibus test			<-0001
	(Intercept)	-1.88	$-3 \cdot 80-0 \cdot 05$. 06
	Mean age, years	$0 \cdot 12$	$0 \cdot 08-0 \cdot 16$	$<\cdot 0001$
	Sex, \% male	$0 \cdot 00$	-0.01-0.01	. 96

Bold values indicate $\mathrm{p}<0 \cdot 05$.

Table S5A. Mean and 95\% confidence interval for total sleep time (TST), sleep efficiency (SE), and duration of REM sleep as a percentage of total sleep time (\%TST) stratified by night of sleep study and mean age based on random effects models.

	TST, minutes	SE, \%
Night of sleep study and mean age, years First night		
18-34	$393 \cdot 4(380 \cdot 0-406 \cdot 9)$	$87 \cdot 4(86 \cdot 4-88 \cdot 3)$
	$\mathrm{k}=33$	$\mathrm{k}=31$
	$\mathrm{n}=878$	$\mathrm{n}=843$
35-49	$369 \cdot 8(351 \cdot 5-388 \cdot 2)$	$84 \cdot 6(82 \cdot 3-86 \cdot 9)$
	$\mathrm{k}=21$	$\mathrm{k}=25$
	$\mathrm{n}=685$	$\mathrm{n}=780$
50-64	$366 \cdot 6(348 \cdot 0-385 \cdot 3)$	$83 \cdot 1(80 \cdot 2-86 \cdot 1)$
	$\mathrm{k}=19$	$\mathrm{k}=18$
	$\mathrm{n}=544$	$\mathrm{n}=551$
65-79	$331 \cdot 9(311 \cdot 6-352 \cdot 2)$	$75 \cdot 3(72 \cdot 0-78 \cdot 7)$
	$\mathrm{k}=13$	$\mathrm{k}=12$
	$\mathrm{n}=303$	$\mathrm{n}=290$
80+	$198 \cdot 6(142 \cdot 5-254 \cdot 7)$	$45 \cdot 7(33 \cdot 7-57 \cdot 7)$
	$\mathrm{k}=1$	$\mathrm{k}=1$
	$\mathrm{n}=10$	$\mathrm{n}=10$
Second night or later		
18-34	429.6 (423-5-435•7)	$90 \cdot 5(89 \cdot 1-91 \cdot 9)$
	$\mathrm{k}=31$	$\mathrm{k}=27$
	$\mathrm{n}=681$	$\mathrm{n}=625$
35-49	419.6 (399•6-439•6)	$88 \cdot 3(86 \cdot 1-90 \cdot 5)$
	$\mathrm{k}=7$	$\mathrm{k}=6$
	$\mathrm{n}=197$	$\mathrm{n}=187$
50-64	$398 \cdot 2(392 \cdot 5-403 \cdot 9)$	$84 \cdot 1(81 \cdot 9-86 \cdot 3)$
	$\mathrm{k}=4$	$\mathrm{k}=3$
	$\mathrm{n}=88$	$\mathrm{n}=63$
65-79	$380 \cdot 5(364 \cdot 9-396 \cdot 0)$	$81 \cdot 2(76 \cdot 2-86 \cdot 3)$
	$\mathrm{k}=3$	$\mathrm{k}=3$
	$\mathrm{n}=66$	$\mathrm{n}=66$
80+	-	-

Note: " k " represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. " n " represents the total number of individuals included.

Table S5B. Mean and 95\% confidence interval for REM latency (REML) stratified by night of sleep study and sex based on random effects models.

	REML, minutes
Night of sleep study and sex First night	
Females only	$102 \cdot 7(98 \cdot 0-107 \cdot 5)$
	$k=15$
	$\mathrm{n}=642$
Males only	$96 \cdot 0(91 \cdot 4-100 \cdot 6)$
	$\mathrm{k}=17$
	$\mathrm{n}=542$
Second night or later	
Females only	$89 \cdot 8(83 \cdot 6-96 \cdot 0)$
	$\begin{aligned} & \mathrm{k}=5 \\ & \mathrm{n}=126 \end{aligned}$
Males only	$78 \cdot 3(69 \cdot 0-87 \cdot 6)$
	$\mathrm{k}=6$
	$\mathrm{n}=66$

Note: "k" represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. " n " represents the total number of individuals included.

Table S6A. Mean and $\mathbf{9 5 \%}$ prediction interval for total sleep time (TST), sleep efficiency (SE), and duration of REM sleep as a percentage of total sleep time (\%TST) stratified by night of sleep study and mean age based on random effects models.

	TST, minutes	SE, \%
Night of sleep study and mean age, years First night		
18-34	$393 \cdot 4(316 \cdot 3-470 \cdot 6)$	$87 \cdot 4(83 \cdot 3-91 \cdot 5)$
	$\mathrm{k}=33$	$\mathrm{k}=31$
	$\mathrm{n}=878$	$\mathrm{n}=843$
35-49	$369 \cdot 8(281 \cdot 4-458 \cdot 2)$	$84 \cdot 6(72 \cdot 8-96 \cdot 3)$
	$\mathrm{k}=21$	$\mathrm{k}=25$
	$\mathrm{n}=685$	$\mathrm{n}=780$
50-64	$366 \cdot 6(281 \cdot 1-452 \cdot 1)$	$83 \cdot 1(70 \cdot 0-96 \cdot 3)$
	$\mathrm{k}=19$	$\mathrm{k}=18$
	$\mathrm{n}=544$	$\mathrm{n}=551$
65-79	$331 \cdot 9(254 \cdot 7-409 \cdot 0)$	$75 \cdot 3(63 \cdot 5-87 \cdot 2)$
	$\mathrm{k}=13$	$\mathrm{k}=12$
	$\mathrm{n}=303$	$\mathrm{n}=290$
80+	-	-
Second night or later		
18-34	$429 \cdot 6(398 \cdot 8-460 \cdot 4)$	$90 \cdot 5(83 \cdot 5-97 \cdot 5)$
	$\mathrm{k}=31$	$\mathrm{k}=27$
	$\mathrm{n}=681$	$\mathrm{n}=625$
35-49	-	-
50-64	-	-
65-79	-	-
80+	-	-

Note: " k " represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. " n " represents the total number of individuals included.
*Higgins 95% prediction intervals were calculated based on a t-distribution with k-2 degrees of freedom. ${ }^{1}$ The validity of this metric strongly depends upon approximation using a large sample size and needs to be interpreted with caution when $\mathrm{k}<20$. We do not report data where $\mathrm{k}<10$.

Table S6B. Mean and 95\% prediction interval* for REM latency (REML) stratified by night of sleep study and sex based on random effects models.

Night of sleep study and sex	REML, minutes
First night	
Females only	$102 \cdot 7(91 \cdot 3-114 \cdot 1)$ $\mathrm{k}=15$ $\mathrm{n}=642$
	$96 \cdot 0(86 \cdot 0-106 \cdot 0)$ $\mathrm{k}=17$ $\mathrm{n}=542$
Males only	-
Second night or later	
Females only	-
Males only	

Note: " k " represents number of control groups combined to reach the pooled estimate. Some studies included more than one control group. " n " represents the total number of individuals included.
*Higgins 95% prediction intervals were calculated based on a t-distribution with k-2 degrees of freedom. ${ }^{1}$ The validity of this metric strongly depends upon approximation using a large sample size and needs to be interpreted with caution when $\mathrm{k}<20$. We do not report data where $\mathrm{k}<10$.

Table S7A. Change in sleep parameters (TST, SE, WASO) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and $\mathbf{9 5 \%}$ CI reported are based on mixed-effects models.

		TST, minutes	SE, \%	WASO, minutes
$35-49$ vs 18-34	Total	$-17 \cdot 5(-30 \cdot 6$ to $-4 \cdot 4) \dagger$	$-3 \cdot 5(-5 \cdot 6 \text { to }-1 \cdot 5)^{*}$	$17 \cdot 2(6 \cdot 9$ to $27 \cdot 5) \dagger$
	Male	$-61 \cdot 1(-95 \cdot 3$ to $-26 \cdot 9)$ *	$-7 \cdot 8(-12 \cdot 3$ to $-3 \cdot 3) *$	$30 \cdot 4(12 \cdot 8$ to $48 \cdot 0) *$
	Female	$-26 \cdot 6(-61 \cdot 9$ to $8 \cdot 8)$	$-2 \cdot 7(-7 \cdot 1$ to $1 \cdot 7)$	$20 \cdot 2(9 \cdot 3$ to $31 \cdot 0)$ *
50-64-vs 18-34	Total	$-35 \cdot 2(-49 \cdot 5$ to $-20 \cdot 9)$ *	$-5 \cdot 6(-7 \cdot 9$ to $-3 \cdot 4)$ *	$30 \cdot 4(18 \cdot 9$ to $41 \cdot 8)$ *
	Male	$-84 \cdot 5(-122 \cdot 8$ to $-46 \cdot 3)$ *	$-10 \cdot 6(-15 \cdot 7 \text { to }-5 \cdot 5)^{*}$	$40 \cdot 8(21 \cdot 3$ to $60 \cdot 4) *$
	Female	$-62 \cdot 4(-100 \cdot 7$ to $-24 \cdot 0) \dagger$	$-8 \cdot 5(-13 \cdot 3$ to $-3 \cdot 7)$ *	$30 \cdot 4(19 \cdot 6$ to $41 \cdot 2) *$
65-79- vs 18-34	Total	$-64 \cdot 5(-82 \cdot 0$ to $-47 \cdot 0)$ *	$-10 \cdot 7(-13 \cdot 7$ to $-7 \cdot 8)$ *	$41 \cdot 1(27 \cdot 8$ to $54 \cdot 4) *$
	Male	$-86 \cdot 1(-124 \cdot 9$ to $-47 \cdot 2)$ *	$-16 \cdot 5(-22 \cdot 2$ to $-10 \cdot 7)$ *	$64 \cdot 2(42 \cdot 5$ to $85 \cdot 9)$ *
	Female	$-98 \cdot 1(-142 \cdot 4$ to $-53 \cdot 8)$ *	$-17 \cdot 0(-23 \cdot 2$ to $-10 \cdot 7)$ *	$52 \cdot 3(37 \cdot 0$ to $67 \cdot 6) *$
$80+$ vs $18-34 \S$	Male	$-208 \cdot 9(-290 \cdot 8$ to $-127 \cdot 1)$ *	$-43 \cdot 0(-57 \cdot 0$ to $-28 \cdot 9)$ *	-
	Female	-	-	-

*indicates $\mathrm{p}<0 \cdot 0001$
\dagger indicates $\mathrm{p}<0 \cdot 001$
\ddagger indicates $\mathrm{p}<0 \cdot 01$
§ Only one study ($\mathrm{n}=10$ males) examined participants with a mean age greater than 80 years.
TST, total sleep time; SE, sleep efficiency; WASO, wake after sleep onset

Table S7B. Change in sleep parameters (SOL, REML, AI) with older age stratified by sex. All differences are relative to the $\mathbf{1 8 - 3 4}$ year-old cohorts. Estimates and $\mathbf{9 5 \%}$ CI reported are based on mixed-effects models.

		SOL, minutes	REML, minutes	AI, events/h
$35-49$ vs 18-34	Total	$1 \cdot 1(-2 \cdot 0$ to $4 \cdot 7)$	$-1 \cdot 1(-9 \cdot 8$ to $7 \cdot 6)$	$2 \cdot 4(0 \cdot 7$ to $4 \cdot 1) \dagger$
	Male	$-0 \cdot 1(-6 \cdot 6$ to $6 \cdot 4)$	$3 \cdot 6(-13 \cdot 6$ to $20 \cdot 9)$	$5 \cdot 0(1 \cdot 7$ to $8 \cdot 3) \dagger$
	Female	$-0 \cdot 5(-3 \cdot 3$ to $4 \cdot 2)$	$-5 \cdot 1(-15 \cdot 7$ to $5 \cdot 5)$	$3 \cdot 6(1 \cdot 3$ to $6 \cdot 0) \dagger$
$50-64$ vs 18-34	Total	$2 \cdot 3(-0 \cdot 9$ to $5 \cdot 6)$	$5 \cdot 2(-5 \cdot 1$ to $15 \cdot 5)$	$6 \cdot 6(4 \cdot 6$ to $8 \cdot 5)$ *
	Male	$-0 \cdot 4(-7 \cdot 0$ to $6 \cdot 2)$	$12 \cdot 8(-7 \cdot 6$ to $33 \cdot 2)$	$12 \cdot 2(7 \cdot 8$ to $16 \cdot 7) *$
	Female	$4 \cdot 9(0 \cdot 5$ to $9 \cdot 3) \ddagger$	$5 \cdot 1(-8 \cdot 0$ to $18 \cdot 1)$	$9 \cdot 5(6 \cdot 4$ to $12 \cdot 6) *$
$65-79$ vs 18-34	Total	$5.0(1.0$ to $9 \cdot 0) \ddagger$	$8 \cdot 3(-3 \cdot 9$ to $20 \cdot 4)$	$8 \cdot 3(5 \cdot 5$ to $11 \cdot 1)$ *
	Male	$2 \cdot 7(-5 \cdot 7$ to $11 \cdot 0)$	$12 \cdot 5(-11 \cdot 3$ to $36 \cdot 4)$	$12 \cdot 8(8 \cdot 2$ to $17 \cdot 4)$ *
	Female	$12 \cdot 1(3 \cdot 6$ to $20 \cdot 7) \dagger$	$8 \cdot 0(-10 \cdot 5$ to $26 \cdot 5)$	$9 \cdot 2(5 \cdot 5$ to $12 \cdot 9) *$
$80+$ vs 18-34 §	Male	$25 \cdot 5(-3 \cdot 2$ to $54 \cdot 3)$	$93 \cdot 6(25 \cdot 5$ to $161 \cdot 7) \dagger$	$20 \cdot 9(4 \cdot 0$ to $37 \cdot 8) \ddagger$
	Female	-	-	-

*indicates $\mathrm{p}<0 \cdot 0001$
\dagger indicates $\mathrm{p}<0 \cdot 001$
\ddagger indicates $\mathrm{p}<0 \cdot 01$
\S Only one study ($\mathrm{n}=10$ males) examined participants with a mean age greater than 80 years.
SOL, sleep onset latency; REML, rapid eye movement sleep latency; AI, arousal index

Table S7C. Change in sleep parameters (N1, N2, N3, REM) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and 95% CI reported are based on mixed-effects models.

		N1, \%TST	N2, \%TST	N3, \%TST	REM, \%TST
$35-49$ vs 18-34	Total	$2 \cdot 2(0 \cdot 8$ to $3 \cdot 7) \dagger$	$0 \cdot 9(-2 \cdot 0$ to $3 \cdot 8)$	$-2 \cdot 2(-5 \cdot 5$ to $1 \cdot 1)$	$-0 \cdot 9(-2 \cdot 3$ to $0 \cdot 5)$
	Male	$-0 \cdot 6(-3 \cdot 2$ to $2 \cdot 0)$	$4 \cdot 2(-2 \cdot 4$ to $10 \cdot 8)$	$-2 \cdot 1(-8 \cdot 4$ to $4 \cdot 1)$	$-0 \cdot 9(-5 \cdot 0$ to $3 \cdot 2)$
	Female	$1 \cdot 4(-0 \cdot 01$ to $2 \cdot 8)$.	$-1 \cdot 9(-4 \cdot 7$ to $0 \cdot 9)$	$-0 \cdot 3(-3 \cdot 4$ to $2 \cdot 9)$	$0 \cdot 6(-0 \cdot 7$ to $2 \cdot 0)$
50-64-vs 18-34	Total	$2 \cdot 0(0 \cdot 5$ to $3 \cdot 6) \dagger$	$2 \cdot 1(-0 \cdot 9$ to $5 \cdot 1)$	$-3 \cdot 9(-7 \cdot 2$ to $-0 \cdot 6)$ *	$-1 \cdot 2(-2 \cdot 7$ to $0 \cdot 3)$
	Male	$-0 \cdot 01(-2 \cdot 7$ to $2 \cdot 7)$	$6 \cdot 6(-0 \cdot 2$ to $13 \cdot 3)$	$-3 \cdot 4(-9 \cdot 7$ to $3 \cdot 0)$	$-2 \cdot 7(-7 \cdot 0$ to $1 \cdot 5)$
	Female	$0 \cdot 9(-0 \cdot 6$ to $2 \cdot 3)$	$1 \cdot 1(-2 \cdot 0$ to $4 \cdot 2)$	$-1 \cdot 0(-4 \cdot 4$ to $2 \cdot 3)$	$-1 \cdot 1(-2 \cdot 6$ to $0 \cdot 5)$
$65-79$ vs 18-34	Total	$2 \cdot 5(0 \cdot 6$ to $4 \cdot 5) \ddagger$	$2 \cdot 6(-1 \cdot 4$ to $6 \cdot 6)$	$-2 \cdot 1(-6 \cdot 5$ to $2 \cdot 4)$	$-2 \cdot 7(-4 \cdot 8$ to $-0 \cdot 7) \dagger$
	Male	$3 \cdot 0(-0 \cdot 6$ to $4 \cdot 6)$	$2 \cdot 7(-4 \cdot 1$ to $9 \cdot 5)$	-4.0 (-10-2 to $2 \cdot 2)$	$-2 \cdot 3(-6 \cdot 3$ to $1 \cdot 7)$
	Female	$1 \cdot 3(-0 \cdot 3$ to $3 \cdot 0)$	$0 \cdot 9(-3 \cdot 1$ to $4 \cdot 9)$	$0 \cdot 4(-3 \cdot 8$ to $4 \cdot 6)$	$-2 \cdot 8(-4 \cdot 8$ to $-0 \cdot 8) \dagger$
$80+$ vs 18-34 §	Male	$22 \cdot 0(8 \cdot 8$ to $35 \cdot 1) \dagger$	$-6 \cdot 5(-18 \cdot 4$ to $5 \cdot 3)$	$-3 \cdot 8(-18 \cdot 5$ to $10 \cdot 8)$	$-11 \cdot 1(-19 \cdot 5$ to $-2 \cdot 7) \dagger$
	Female	-	-	-	-

*indicates $\mathrm{p}<0 \cdot 0001$
\dagger indicates $\mathrm{p}<0 \cdot 001$
\ddagger indicates $\mathrm{p}<0.01$
\S Only one study ($\mathrm{n}=10$ males) examined participants with a mean age greater than 80 years.
N1, stage N1 sleep; N2, stage N2 sleep; N3, stage N3 sleep; REM, rapid eye movement sleep

Table S7D. Change in sleep parameters (AHI, mean SaO2, minimum SaO2, PLMI) with older age stratified by sex. All differences are relative to the 18-34 year-old cohorts. Estimates and $\mathbf{9 5 \%}$ CI reported are based on mixed-effects models.

		AHI, events/h	Mean $\mathbf{S a O}_{\mathbf{2}}$, \%	Minimum $\mathbf{S a O}_{\mathbf{2}}, \mathbf{\%}$	PLMI, events/h
$35-49$ vs 18-34	Total	$1 \cdot 3(0 \cdot 6$ to $2 \cdot 0)$ *	$-0 \cdot 9(-1 \cdot 4$ to $-0 \cdot 4) \dagger$	$-1 \cdot 1(-2 \cdot 7$ to $0 \cdot 5)$	$1 \cdot 9(0 \cdot 7$ to $3 \cdot 0) \dagger$
	Male	$1 \cdot 7(-0 \cdot 3$ to $3 \cdot 6)$	$-1 \cdot 3(-1 \cdot 9 \text { to }-0 \cdot 7)^{*}$	$-4 \cdot 4(-6 \cdot 1$ to $-2 \cdot 8)$ *	$1 \cdot 2(-0 \cdot 2$ to $2 \cdot 6)$
	Female	$2 \cdot 4(0 \cdot 8$ to $4 \cdot 0) \dagger$	$-0 \cdot 9(-1 \cdot 4 \text { to }-0 \cdot 4)^{*}$	$-2 \cdot 6(-4 \cdot 0$ to $-1 \cdot 2)$ *	$3 \cdot 4(1 \cdot 7$ to $5 \cdot 1)$ *
50-64-vs 18-34	Total	$2 \cdot 4(1 \cdot 6$ to $3 \cdot 1)$ *	$-1 \cdot 9(-2 \cdot 4 \text { to }-1 \cdot 3)^{*}$	$-4 \cdot 4(-6 \cdot 2$ to $-2 \cdot 5)$ *	$4 \cdot 0(2 \cdot 7$ to $5 \cdot 3)$ *
	Male	$8 \cdot 4(5 \cdot 5$ to $11 \cdot 4)$ *	$-1 \cdot 7(-2 \cdot 4 \text { to }-1 \cdot 1)^{*}$	$-5 \cdot 9(-8 \cdot 1$ to $-3 \cdot 8)$ *	$7 \cdot 1(4 \cdot 0$ to $10 \cdot 3)$ *
	Female	$3 \cdot 4(1 \cdot 6$ to $5 \cdot 2)$ *	$-2 \cdot 2(-2 \cdot 7 \text { to }-1 \cdot 7)^{*}$	$-6 \cdot 8(-8 \cdot 2$ to $-5 \cdot 4)$ *	$2 \cdot 7(1 \cdot 0$ to $4 \cdot 4) \dagger$
$65-79$ vs 18-34	Total	$13 \cdot 7(11 \cdot 4$ to $16 \cdot 1) *$	$-2 \cdot 9(-3 \cdot 5 \text { to }-2 \cdot 2)^{*}$	$-8 \cdot 4(-10 \cdot 6$ to $-6 \cdot 1) *$	$6 \cdot 4(4 \cdot 2$ to $8 \cdot 6)$ *
	Male	$16 \cdot 2(10 \cdot 7$ to $21 \cdot 8)$ *	$-2 \cdot 4(-3 \cdot 2 \text { to }-1 \cdot 6)^{*}$	$-6 \cdot 6(-8 \cdot 7$ to $-4 \cdot 5)$ *	$15 \cdot 4(7 \cdot 7$ to $23 \cdot 1)$ *
	Female	$14 \cdot 8(10 \cdot 8$ to $18 \cdot 8) *$	$-3 \cdot 6(-4 \cdot 3$ to $-2 \cdot 9)$ *	$-9 \cdot 3(-11 \cdot 4$ to $-7 \cdot 3)$ *	$3 \cdot 9(1 \cdot 3$ to $6 \cdot 5) \dagger$
$80+$ vs $18-34 \S$	Male	$27 \cdot 6(9 \cdot 2$ to $45 \cdot 9) \dagger$	$-1 \cdot 7(-3 \cdot 6$ to $0 \cdot 2)$	$-3 \cdot 3(-7 \cdot 7$ to $1 \cdot 2)$	$13 \cdot 7(4 \cdot 8$ to $22 \cdot 6) \dagger$
	Female	-	-	-	-

*indicates $\mathrm{p}<0.0001$
\dagger indicates $\mathrm{p}<0.001$
\ddagger indicates $\mathrm{p}<0 \cdot 01$
§ Only one study ($\mathrm{n}=10$ males) examined participants with a mean age greater than 80 years.
AHI, apnea-hypopnea index; mean SaO 2 , mean oxygen saturation; minimum SaO 2 , oxygen saturation; PLMI, periodic limb movement index

Table S8A. Mixed effects models examining effect of age, sex, and night of sleep study on total sleep time (TST), after controlling for quality-related variables.

	Mean age, years		Sex, \% male		Night of sleep study (second night or later)	
	Estimate (95\% CI)	p	Estimate (95\% CI)	p	Estimate (95\% CI)	p
Tri-variate mixed effects model with mean age, sex, and night of sleep study	$-1.01(-1.28$ to -0.75$)$	$<\cdot 0001$	$0.03(-1.28$ to -0.75$)$	$\cdot 66$	$38 \cdot 3(29 \cdot 4$ to $47 \cdot 2)$	$<\cdot 0001$
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	$-0 \cdot 74(-1 \cdot 00$ to $-0 \cdot 50)$	$<\cdot 0001$	$0 \cdot 08(-0.04$ to 0.20$)$	$\cdot 21$	$29 \cdot 1(20 \cdot 7$ to $37 \cdot 6)$	$<\cdot 0001$
Exclusion criteria stated for medical disorders	$-0.79(-1.09$ to -0.48$)$	$<\cdot 0001$	$0 \cdot 05(-0 \cdot 09$ to $0 \cdot 19)$. 46	$36 \cdot 4(26 \cdot 8$ to $45 \cdot 9)$	$<\cdot 0001$
Exclusion criteria stated for psychiatric disorders	$-0 \cdot 94(-1 \cdot 19$ to $-0 \cdot 70)$	$<\cdot 0001$	$0 \cdot 09(-0.03$ to 0.21$)$	$\cdot 15$	$32 \cdot 0(23 \cdot 5$ to $40 \cdot 5)$	$<\cdot 0001$
Recruited from population-based studies	$-0 \cdot 83(-1 \cdot 08$ to $-0 \cdot 58)$	$<\cdot 0001$	$0 \cdot 03(-0.09$ to $0 \cdot 15)$. 57	$24 \cdot 2(15 \cdot 4$ to $32 \cdot 9)$	$<\cdot 0001$

Table S8B. Mixed effects models examining effect of age, sex, and night of sleep study on sleep efficiency (SE), after controlling for quality-related variables.

	Mean age, years		Sex, \% male		Night of sleep study (second night or later)	
	Estimate (95\% CI)	p	Estimate (95\% CI)	p	Estimate ($95 \% \mathrm{CI}$)	p
Tri-variate mixed effects model with mean age, sex, and night of sleep study	-0.21 (-0.26 to -0.15)	$<\cdot 0001$	$-0.01(-0.04$ to $0 \cdot 01)$	$\cdot 30$	$2 \cdot 65$ (0.76 to $4 \cdot 44)$	$\cdot 0037$
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	$-0 \cdot 19(-0 \cdot 5$ to $-0 \cdot 14)$	$<\cdot 0001$	$-0.01(-0.04$ to 0.01$)$	$\cdot 38$	$2 \cdot 15$ (0•34 to $3 \cdot 96)$	$\cdot 020$
Exclusion criteria stated for medical disorders	$-0 \cdot 18(-0 \cdot 23$ to $-0 \cdot 13)$	$<\cdot 0001$	$-0.01(-0.04$ to $0 \cdot 01)$	$\cdot 32$	$2 \cdot 60$ (0.92 to $4 \cdot 28)$. 0024
Exclusion criteria stated for psychiatric disorders	$-0 \cdot 20(-0 \cdot 25$ to $-0 \cdot 15)$	$<\cdot 0001$	$-0.01(-0.03$ to 0.02$)$. 46	$2 \cdot 23$ (0.47 to $3 \cdot 98)$	$0 \cdot 013$
Recruited from population-based studies	$-0 \cdot 19(-0 \cdot 24$ to $-0 \cdot 14)$	$<\cdot 0001$	$-0.01(-0.04$ to 0.01$)$	$\cdot 21$	$1 \cdot 28(-0.45$ to 3.00$)$	$\cdot 15$

Table S8C. Mixed effects models examining effect of age, sex, and night of sleep study on wake after sleep onset (WASO), after controlling for quality-related variables.

	Mean age, years		Sex, \% male		Night of sleep study (second night or later)	
	Estimate (95\% CI)	p	Estimate (95\% CI)	p	Estimate (95\% CI)	p
Tri-variate mixed effects model with mean age, sex, and night of sleep study	$0 \cdot 97(0 \cdot 69$ to $1 \cdot 24)$	$<\cdot 0001$	$0 \cdot 00(-0 \cdot 11$ to $0 \cdot 12)$. 94	$-5 \cdot 58(-14 \cdot 92$ to $3 \cdot 75)$	$\cdot 24$
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	$0 \cdot 88(0 \cdot 62$ to $1 \cdot 14)$	$<\cdot 0001$	$0 \cdot 00(-0 \cdot 11$ to $0 \cdot 10)$	$\cdot 97$	$-2 \cdot 22(-10 \cdot 93$ to $6 \cdot 48)$	$\cdot 62$
Exclusion criteria stated for medical disorders	$0 \cdot 90$ (0.63 to $1 \cdot 17)$	$<\cdot 0001$	$0 \cdot 00(-0 \cdot 11$ to $0 \cdot 11)$	$1 \cdot 00$	$-4 \cdot 54(-13 \cdot 4$ to $4 \cdot 33)$	$\cdot 32$
Exclusion criteria stated for psychiatric disorders	$0 \cdot 94(0 \cdot 65$ to 1.23$)$	$<\cdot 0001$	$0 \cdot 00(-0 \cdot 12$ to $0 \cdot 12)$. 98	$-5 \cdot 00(-14 \cdot 6$ to $4 \cdot 60)$	$\cdot 31$
Recruited from population-based studies	$0 \cdot 87(0 \cdot 63$ to $1 \cdot 11)$	$<\cdot 0001$	$0 \cdot 00(-0 \cdot 10$ to $0 \cdot 10)$. 96	$0 \cdot 07(-8.44$ to 8.59$)$. 99

Table S8D. Mixed effects models examining effect of age, sex, and night of sleep study on sleep onset latency (SOL), after controlling for quality-related variables.

	Mean age, years		Sex, \% male		Night of sleep study (second night or later)	
	Estimate (95\% CI)	p	Estimate (95\% CI)	p	Estimate (95\% CI)	p
Tri-variate mixed effects model with mean age, sex, and night of sleep study	$0 \cdot 11(0 \cdot 03$ to $0 \cdot 19)$	$0 \cdot 0051$	$0.02(-0.02$ to 0.05$)$	$0 \cdot 34$	$-0 \cdot 15(-2 \cdot 70$ to $2 \cdot 41)$	0.91
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	$0 \cdot 11(0 \cdot 03$ to $0 \cdot 19)$	0.0064	$0 \cdot 02(-0.02$ to 0.05$)$	$0 \cdot 34$	$-0 \cdot 17(-2 \cdot 82$ to $2 \cdot 49)$	$0 \cdot 90$
Exclusion criteria stated for medical disorders	$0 \cdot 11(0 \cdot 02$ to $0 \cdot 19)$	0.011	$0 \cdot 02(-0.02$ to 0.05$)$	$0 \cdot 36$	-0.09 (-2.69 to $2 \cdot 51)$	$0 \cdot 95$
Exclusion criteria stated for psychiatric disorders	$0 \cdot 10(0 \cdot 03$ to $0 \cdot 18)$	$0 \cdot 0093$	$0.01(-0.02$ to 0.05$)$	$0 \cdot 44$	$0 \cdot 07(-2 \cdot 54$ to $2 \cdot 69)$	$0 \cdot 96$
Recruited from population-based studies	$0 \cdot 10$ (0.03 to $0 \cdot 18)$	$0 \cdot 0081$	$0 \cdot 02(-0.02$ to 0.05$)$	$0 \cdot 33$	$0 \cdot 78$ (-1.95 to 3.51$)$	$0 \cdot 58$

Table S8E. Mixed effects models examining effect of age, sex, and night of sleep study on REM latency (REML), after controlling for quality-related variables.

	Mean age, years		Sex, \% male		Night of sleep study (second night or later)	
	Estimate (95\% CI)	p	Estimate (95\% CI)	p	Estimate (95\% CI)	p
Tri-variate mixed effects model with mean age, sex, and night of sleep study	0.02 (-0.22 to 0.25$)$. 90	$-0 \cdot 09(-0 \cdot 16$ to $-0 \cdot 01)$	$\cdot 027$	$-11 \cdot 14(-17 \cdot 87$ to $-4 \cdot 42)$	$\cdot 0012$
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	$0 \cdot 02(-0.22$ to $0 \cdot 26)$. 88	$-0 \cdot 09(-0 \cdot 16$ to $-0 \cdot 01)$	$\cdot 030$	$-11 \cdot 33(-18 \cdot 72$ to $-3 \cdot 94)$. 0026
Exclusion criteria stated for medical disorders	-0.02 (-0.24 to $0 \cdot 22)$. 91	$-0 \cdot 09(-0 \cdot 17$ to $-0 \cdot 02)$	- 016	$-9 \cdot 96(-16 \cdot 7$ to $-3 \cdot 24)$. 0037
Exclusion criteria stated for psychiatric disorders	$0 \cdot 02(-0.22$ to $0 \cdot 26)$	$\cdot 87$	$-0 \cdot 08(-0 \cdot 16$ to $0 \cdot 00)$. 042	$-11 \cdot 71(-18 \cdot 89$ to $-4 \cdot 53)$	-0014
Recruited from population-based studies	$0.01(-0.22$ to 0.25$)$. 90	$-0 \cdot 09(-0 \cdot 16$ to $-0 \cdot 01)$	$\cdot 027$	$-10 \cdot 69(-19 \cdot 82$ to $-2 \cdot 56)$	$\cdot 010$

Table S8F. Mixed effects models examining effect of age, sex, and night of sleep study on arousal index (AI), after controlling for quality-related variables.

	Mean age, years		Sex, \% male		Night of sleep study (second night or later)	
	Estimate (95\% CI)	p	Estimate (95\% CI)	p	Estimate (95\% CI)	p
Tri-variate mixed effects model with mean age, sex, and night of sleep study	$-0 \cdot 21(0 \cdot 15$ to $0 \cdot 26)$	$<\cdot 0001$	$0 \cdot 03$ (0.00 to 0.05)	. 029	$-1 \cdot 60(-3 \cdot 87$ to $0 \cdot 68)$	$\cdot 17$
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	$0 \cdot 20$ (0.14 to $0 \cdot 26)$	$<\cdot 0001$	$0 \cdot 03$ (0.00 to 0.05)	$\cdot 031$	$-1.46(-3.95$ to 1.03$)$	25
Exclusion criteria stated for medical disorders	$0 \cdot 19(0 \cdot 13$ to $0 \cdot 25)$	$<\cdot 0001$	$0 \cdot 03$ (0.00 to 0.05$)$. 026	$-1 \cdot 58(-3 \cdot 85$ to $0 \cdot 69)$	$\cdot 17$
Exclusion criteria stated for psychiatric disorders	$0 \cdot 20(0 \cdot 14$ to $0 \cdot 26)$	$<\cdot 0001$	$0 \cdot 02$ (0.00 to 0.05$)$	$\cdot 042$	$-1 \cdot 29(-3 \cdot 64$ to $1 \cdot 06)$	- 28
Recruited from population-based studies	$0 \cdot 20$ (0.14 to $0 \cdot 25)$	$<\cdot 0001$	$0 \cdot 03$ (0.00 to 0.05$)$. 022	$-0 \cdot 74(-3 \cdot 15$ to $1 \cdot 68)$. 55

Table S8G. Mixed effects models examining effect of age, sex, and night of sleep study on duration of N1 sleep, as a percentage of total sleep time (\%TST), after controlling for quality-related variables.

	Mean age, years		Sex, \% male		Night of sleep study (second night or later)	
	Estimate (95\% CI)	p	Estimate (95\% CI)	p	Estimate (95\% CI)	p
Tri-variate mixed effects model with mean age, sex, and night of sleep study	$0 \cdot 05(0 \cdot 01$ to $0 \cdot 08)$	$\cdot 0069$	$0 \cdot 00(-0 \cdot 01$ to $0 \cdot 02)$	$\cdot 57$	$0 \cdot 68(-0 \cdot 70$ to $2 \cdot 05)$	$\cdot 34$
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	$0 \cdot 07(0 \cdot 03$ to $0 \cdot 11)$	$\cdot 00015$	$0 \cdot 01(-0 \cdot 01$ to $0 \cdot 02)$	$\cdot 44$	$-0 \cdot 27(-1 \cdot 71$ to $1 \cdot 16)$. 71
Exclusion criteria stated for medical disorders	$0 \cdot 07(0 \cdot 03$ to $0 \cdot 10)$	$\cdot 00051$	$0 \cdot 01(-0 \cdot 01$ to $0 \cdot 02)$. 48	$0 \cdot 38(-1 \cdot 01$ to $1 \cdot 78)$. 59
Exclusion criteria stated for psychiatric disorders	$0 \cdot 06$ (0.03 to 010)	$\cdot 00023$	$0 \cdot 01(-0 \cdot 01$ to $0 \cdot 02)$	$\cdot 22$	$0 \cdot 14(-1 \cdot 15$ to $1 \cdot 43)$	$\cdot 83$
Recruited from population-based studies	$0 \cdot 07(0 \cdot 03$ to $0 \cdot 10)$	$\cdot 00016$	$0 \cdot 01(-0 \cdot 01$ to $0 \cdot 02)$	$\cdot 37$	$-1 \cdot 15(-2 \cdot 54$ to $0 \cdot 25)$	$\cdot 11$

Table S8H. Mixed effects models examining effect of age, sex, and night of sleep study on duration of $\mathbf{N} 2$ sleep, as a percentage of total sleep time (\%TST), after controlling for quality-related variables.

	Mean age, years		Sex, \% male		Night of sleep study (second night or later)	
	Estimate (95\% CI)	p	Estimate (95\% CI)	p	Estimate ($95 \% \mathrm{CI}$)	p
Tri-variate mixed effects model with mean age, sex, and night of sleep study	$0 \cdot 00(-0.06$ to 0.07$)$. 90	$-0.01(-0.04$ to 0.03$)$.71	$-3 \cdot 44(-6 \cdot 18$ to $-0 \cdot 70)$	$\cdot 014$
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	$-0.01(-0.08$ to 0.07$)$	- 86	$-0 \cdot 01(-0 \cdot 04$ to $0 \cdot 02)$. 67	$-2 \cdot 95(-5 \cdot 85$ to -0.06$)$	$\cdot 046$
Exclusion criteria stated for medical disorders	$0 \cdot 00(-0.08$ to $0 \cdot 07)$. 94	$-0.01(-0.04$ to $0 \cdot 03)$. 70	$-3 \cdot 38(-6 \cdot 15$ to $-0 \cdot 60)$	$\cdot 017$
Exclusion criteria stated for psychiatric disorders	$0 \cdot 01(-0.07$ to 0.08$)$. 87	$-0.01(-0.04$ to 0.03$)$. 72	$-3 \cdot 47(-6 \cdot 26$ to $-0 \cdot 68)$	$\cdot 015$
Recruited from population-based studies	$-0.01(-0.07$ to 0.06$)$. 88	$-0 \cdot 01(-0 \cdot 04$ to $0 \cdot 02)$	- 65	$-2 \cdot 37(-5 \cdot 29$ to $0 \cdot 56)$	$\cdot 11$

Table S8I. Mixed effects models examining effect of age, sex, and night of sleep study on duration of N3 sleep, as a percentage of total sleep time (\%TST), after controlling for quality-related variables.

	Mean age, years		Sex, \% male		Night of sleep study (second night or later)	
	Estimate (95\% CI)	p	Estimate ($95 \% \mathrm{CI}$)	p	Estimate (95\% CI)	p
Tri-variate mixed effects model with mean age, sex, and night of sleep study	$-0 \cdot 06(-0 \cdot 12$ to $0 \cdot 01)$. 08	$-0 \cdot 01(-0 \cdot 04$ to $0 \cdot 01)$	$\cdot 30$	$0 \cdot 74(-1.74$ to 3.22$)$. 56
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	$-0 \cdot 08(-0 \cdot 14$ to $-0 \cdot 01)$	$\cdot 020$	$-0 \cdot 02(-0 \cdot 05$ to $0 \cdot 01)$. 25	$1 \cdot 50(-1 \cdot 06$ to $4 \cdot 10)$	$\cdot 25$
Exclusion criteria stated for medical disorders	$-0 \cdot 08(-0 \cdot 14$ to $-0 \cdot 01)$	$\cdot 016$	--0.02 (-0.04 to 0.01$)$	- 27	$0 \cdot 96(-1 \cdot 44$ to $3 \cdot 36)$. 43
Exclusion criteria stated for psychiatric disorders	$-0 \cdot 07(-0 \cdot 13$ to $-0 \cdot 01)$	$\cdot 034$	$-0 \cdot 02(-0 \cdot 05$ to $0 \cdot 01)$	- 24	$-0 \cdot 91(-156$ to $3 \cdot 38)$. 57
Recruited from population-based studies	$-0 \cdot 07(-0 \cdot 13$ to -0.01$)$	$\cdot 029$	$-0 \cdot 02(-0 \cdot 04$ to $0 \cdot 01)$. 25	$1 \cdot 70(-0 \cdot 83$ to $4 \cdot 23)$	$\cdot 19$

Table S8J. Mixed effects models examining effect of age, sex, and night of sleep study on duration of REM sleep, as a percentage of total sleep time (\%TST), after controlling for quality-related variables.

	Mean age, years		Sex, \% male		Night of sleep study (second night or later)	
	Estimate (95\% CI)	p	Estimate (95\% CI)	p	Estimate (95\% CI)	p
Tri-variate mixed effects model with mean age, sex, and night of sleep study	$-0.03(-0.06$ to 0.00$)$. 08	$-0.01(0.00$ to 0.03$)$	$\cdot 11$	$3 \cdot 52(2 \cdot 32$ to $4 \cdot 72)$	$<\cdot 0001$
Quality-related variable added to model						
Exclusion criteria stated for sleep complaints and/or disorders	$-0.03(-0.06$ to 0.00$)$	$\cdot 10$	$0 \cdot 01(0 \cdot 00$ to $0 \cdot 03)$	$\cdot 12$	$3 \cdot 53$ (2.23 to $4 \cdot 81)$	$<\cdot 0001$
Exclusion criteria stated for medical disorders	$-0.02(-0.05$ to 0.01$)$	$\cdot 20$	$0 \cdot 01(0 \cdot 00$ to $0 \cdot 03)$	$\cdot 12$	$3 \cdot 43$ (2.21 to $4 \cdot 65$)	$<\cdot 0001$
Exclusion criteria stated for psychiatric disorders	$-0.03(-0.06$ to 0.00$)$. 07	$0 \cdot 01(0 \cdot 00$ to $0 \cdot 03)$	$\cdot 12$	$3 \cdot 55$ (2.34 to $4 \cdot 76)$	$<\cdot 0001$
Recruited from population-based studies	$-0.03(-0.06$ to 0.00$)$	- 046	$0 \cdot 01(0 \cdot 00$ to $0 \cdot 02)$	$\cdot 12$	$3 \cdot 92(2 \cdot 66$ to $5 \cdot 19)$	$<\cdot 0001$

Table S8K. Mixed effects models examining effect of age and sex on apnea-hypopnea index (AHI), after controlling for quality-related variables.

	Mean age, years		Sex, \% male	
	Estimate (95\% CI)	p	Estimate (95\% CI)	p
Bivariate mixed effects model with mean age and sex	$0 \cdot 12(0 \cdot 09$ to $0 \cdot 14)$	$<\cdot 0001$	$0 \cdot 02$ (0.01 to 0.03$)$	$\cdot 00043$
Quality-related variable added to model				
Exclusion criteria stated for sleep complaints and/or disorders	$0 \cdot 11(0 \cdot 09$ to $0 \cdot 14)$	$<\cdot 0001$	$0 \cdot 02$ (0.01 to 0.03$)$	$<\cdot 0001$
Exclusion criteria stated for medical disorders	$0 \cdot 12(0 \cdot 09$ to $0 \cdot 14)$	$<\cdot 0001$	$0 \cdot 02$ (0.01 to 0.03$)$	$<\cdot 0001$
Exclusion criteria stated for psychiatric disorders	$0 \cdot 12(0 \cdot 09$ to $0 \cdot 14)$	$<\cdot 0001$	$0 \cdot 02(0.01$ to 0.03$)$	$\cdot 00022$
Recruited from population-based studies	$0 \cdot 13$ (0.11 to $0 \cdot 15)$	$<\cdot 0001$	$0 \cdot 02$ (0.02 to 0.03$)$	$<\cdot 0001$

Table S8L. Mixed effects models examining effect of age and sex on mean arterial oxygen saturation (SaO2), after controlling for quality-related variables.

	Mean age, years		Sex, \% male	
	Estimate ($95 \% \mathrm{CI}$)	p	Estimate (95% CI)	p
Bivariate mixed effects model with mean age and sex	$-0 \cdot 06(-0 \cdot 07$ to -0.05$)$	$<\cdot 0001$	$-0 \cdot 01(-0 \cdot 01$ to $0 \cdot 00)$	$\cdot 0017$
Quality-related variable added to model				
Exclusion criteria stated for sleep complaints and/or disorders	$-0 \cdot 06(-0 \cdot 07$ to $-0 \cdot 05)$	$<\cdot 0001$	$-0 \cdot 01(-0 \cdot 01$ to $0 \cdot 00)$	$\cdot 0017$
Exclusion criteria stated for medical disorders	$-0 \cdot 06(-0 \cdot 07$ to $-0 \cdot 05)$	$<\cdot 0001$	$-0 \cdot 01(-0 \cdot 01$ to $0 \cdot 00)$. 0011
Exclusion criteria stated for psychiatric disorders	$-0 \cdot 06(-0 \cdot 07$ to $-0 \cdot 05)$	$<\cdot 0001$	$-0 \cdot 01(-0 \cdot 01$ to $0 \cdot 00)$. 00071
Recruited from population-based studies	$-0 \cdot 06(-0 \cdot 07$ to $-0 \cdot 05)$	$<\cdot 0001$	$-0 \cdot 01(-0 \cdot 01$ to $0 \cdot 00)$. 00080

Table S8M. Mixed effects models examining effect of age and sex on minimum arterial oxygen saturation (SaO 2), after controlling for quality-related variables.

	Mean age, years		Sex, \% male	
	Estimate (95\% CI)	p	Estimate (95\% CI)	p
Bivariate mixed effects model with mean age and sex	$-0 \cdot 18(-0 \cdot 23$ to $0 \cdot 13)$	$<\cdot 0001$	$-0.01(-0.03$ to 0.01$)$	54
Quality-related variable added to model				
Exclusion criteria stated for sleep complaints and/or disorders	$-0 \cdot 17(-0 \cdot 23$ to $-0 \cdot 12)$	$<\cdot 0001$	$-0.01(-0.03$ to 0.01$)$	52
Exclusion criteria stated for medical disorders	$-0 \cdot 17(-0 \cdot 21$ to $-0 \cdot 13)$	$<\cdot 0001$	$-0.01(-0.02$ to 0.01$)$	32
Exclusion criteria stated for psychiatric disorders	$-0 \cdot 19(-0 \cdot 24$ to $-0 \cdot 13)$	$<\cdot 0001$	$-0.01(-0.03$ to 0.02$)$	55
Recruited from population-based studies	$-0 \cdot 17(-0 \cdot 21$ to $-0 \cdot 13)$	$<\cdot 0001$	$-0 \cdot 01(-0.02$ to $0 \cdot 01)$	31

Table S8N. Mixed effects models examining effect of age and sex on periodic limb movements index (PLMI), after controlling for quality-related variables.

	Mean age, years		Sex, \% male	
	Estimate (95\% CI)	p	Estimate (95\% CI)	p
Bivariate mixed effects model with mean age and sex	$0 \cdot 12(0 \cdot 08$ to $0 \cdot 16)$	$<\cdot 0001$	$0 \cdot 00(-0 \cdot 01$ to $0 \cdot 01)$	96
Quality-related variable added to model				
Exclusion criteria stated for sleep complaints and/or disorders	$0 \cdot 12(0 \cdot 08$ to $0 \cdot 16)$	$<\cdot 0001$	$0 \cdot 00(-0 \cdot 01$ to $0 \cdot 01)$	96
Exclusion criteria stated for medical disorders	$0 \cdot 12(0 \cdot 08$ to $0 \cdot 16)$	$<\cdot 0001$	$0 \cdot 00(-0 \cdot 01$ to $0 \cdot 01)$. 98
Exclusion criteria stated for psychiatric disorders	$0 \cdot 12(0.08$ to $0 \cdot 16)$	$<\cdot 0001$	$0 \cdot 00(-0 \cdot 01$ to $0 \cdot 01)$. 97
Recruited from population-based studies	$0 \cdot 13$ (0.09 to $0 \cdot 17)$	$<\cdot 0001$	$0 \cdot 00(-0 \cdot 01$ to $0 \cdot 02)$	88

Table S9. Summary of findings for sleep parameters by age, sex, and night of the sleep study

	Change per 10 years of ageing	Change for every $\mathbf{1 0 \%}$ increase in percentage of male participants	Change when sleep study was done on second or later night compared with first night	Appendix table reporting normative data as prediction intervals
Total sleep time, min	$\begin{aligned} & -10 \cdot 1(-12 \cdot 8 \text { to }-7 \cdot 5) \\ & \mathbf{p}<0 \cdot 0001 \end{aligned}$	$\begin{aligned} & 0 \cdot 3(-1 \cdot 0 \text { to } 1 \cdot 6) \\ & \mathrm{p}=0 \cdot 66 \end{aligned}$	$\begin{aligned} & 38 \cdot 3(29 \cdot 4 \text { to } 47 \cdot 2) \\ & \mathrm{p}<0 \cdot 0001 \end{aligned}$	Table 3A*, p 8
Sleep efficiency	$\begin{aligned} & -2 \cdot 1 \%(-2 \cdot 6 \text { to }-1 \cdot 5) \\ & \mathrm{p}<0 \cdot 0001 \end{aligned}$	$\begin{aligned} & -0 \cdot 1 \%(-0 \cdot 4 \text { to } 0 \cdot 1) \\ & \mathrm{p}=0 \cdot 30 \end{aligned}$	$\begin{aligned} & 2.7 \%(0.9 \text { to } 4.4) \\ & \mathbf{p}=0.0037 \end{aligned}$	Table 3A*, p 8
Wake after sleep onset, min	$\begin{aligned} & 9 \cdot 7(6 \cdot 9 \text { to } 12 \cdot 4) \\ & \mathbf{p}<0 \cdot 0001 \end{aligned}$	$\begin{aligned} & 0 \cdot 0(-1 \cdot 2 \text { to } 1 \cdot 2) \\ & \mathrm{p}=0 \cdot 94 \end{aligned}$	$\begin{aligned} & -5 \cdot 6(-14 \cdot 9 \text { to } 3 \cdot 8) \\ & \mathrm{p}=0 \cdot 24 \end{aligned}$	Table 3A, p 8
Sleep onset latency, min	$\begin{aligned} & 1 \cdot 1(0.3 \text { to } 1.9) \\ & p=0.0051 \end{aligned}$	$\begin{aligned} & 0 \cdot 2(-0 \cdot 2 \text { to } 0 \cdot 5) \\ & \mathrm{p}=0 \cdot 34 \end{aligned}$	$\begin{aligned} & -0.2(-2.7 \text { to } 2 \cdot 4) \\ & \mathrm{p}=0.91 \end{aligned}$	Table 3B, p 9
REM latency, min	$\begin{aligned} & 0 \cdot 1(-2 \cdot 2 \text { to } 2 \cdot 5) \\ & \mathrm{p}=0 \cdot 90 \end{aligned}$	$\begin{aligned} & -0.9(-1.6 \text { to }-0.1) \\ & p=0.027 \end{aligned}$	$\begin{aligned} & -11 \cdot 1(-17 \cdot 9 \text { to }-4 \cdot 4) \\ & p=0 \cdot 0012 \end{aligned}$	Table 3B \dagger, p 9
Arousal index, events per h	$\begin{aligned} & 2 \cdot 1(1 \cdot 5 \text { to } 2.6) \\ & \mathbf{p}<0 \cdot 0001 \end{aligned}$	$\begin{aligned} & 0.3(0.0 \text { to } 0.5) \\ & p=0.029 \end{aligned}$	$\begin{aligned} & -1 \cdot 6(-3 \cdot 9 \text { to } 0 \cdot 7) \\ & \mathrm{p}=0 \cdot 17 \end{aligned}$	Table 3B \ddagger, p 9
Percentage of time total sleep time in sleep stages				
N1	$\begin{aligned} & 0.5 \%(0.1 \text { to } 0.8) \\ & p=0.0069 \end{aligned}$	$\begin{aligned} & 0 \cdot 0 \%(-0 \cdot 1 \text { to } 0 \cdot 2) \\ & \mathrm{p}=0 \cdot 57 \end{aligned}$	$\begin{aligned} & 0 \cdot 7 \%(-0 \cdot 7 \text { to } 2 \cdot 1) \\ & \mathrm{p}=0 \cdot 34 \end{aligned}$	Table 3C, p 10
N2	$\begin{aligned} & 0 \cdot 0(-0 \cdot 6 \text { to } 0 \cdot 7) \\ & \mathrm{p}=0 \cdot 90 \end{aligned}$	$\begin{aligned} & -0 \cdot 1 \%(-0.4 \text { to } 0 \cdot 3) \\ & \mathrm{p}=0.71 \end{aligned}$	$\begin{aligned} & -3 \cdot 7 \%(-6 \cdot 2 \text { to }-1 \cdot 1) \\ & p=0 \cdot 0051 \end{aligned}$	Table 3C, p 10
N3	$\begin{aligned} & -0 \cdot 6(-1 \cdot 2 \text { to } 0 \cdot 1) \\ & \mathrm{p}=0 \cdot 08 \end{aligned}$	$\begin{aligned} & -0 \cdot 2 \%(-0 \cdot 4 \text { to } 0 \cdot 1) \\ & \mathrm{p}=0 \cdot 30 \end{aligned}$	$\begin{aligned} & 0 \cdot 7 \%(-1 \cdot 7 \text { to } 3 \cdot 2) \\ & \mathrm{p}=0 \cdot 56 \end{aligned}$	Table 3C, p 10
REM	$\begin{aligned} & -0 \cdot 3(-0 \cdot 6 \text { to } 0 \cdot 0) \\ & \mathrm{p}=0.08 \end{aligned}$	$\begin{aligned} & 0 \cdot 1 \%(0 \cdot 0 \text { to } 0 \cdot 3) \\ & \mathrm{p}=0 \cdot 11 \end{aligned}$	$\begin{aligned} & 3 \cdot 5 \%(2 \cdot 3 \text { to } 4 \cdot 7) \\ & \mathbf{p}<\mathbf{0} \cdot 0001 \end{aligned}$	Table 3C, p 10
AHI, events per h	$\begin{aligned} & 1.2(0.9 \text { to } 1.4) \\ & \mathrm{p}<0 \cdot 0001 \end{aligned}$	$\begin{aligned} & 0 \cdot 2(0 \cdot 1 \text { to } 0 \cdot 3) \\ & \mathrm{p}=0 \cdot 00043 \end{aligned}$.	Table 3D \ddagger, p 11
Mean SaO_{2}	$\begin{aligned} & -0.6 \%(-0.7 \text { to }-0.5) \\ & \mathbf{p}<0.0001 \end{aligned}$	$\begin{aligned} & -\mathbf{0} \cdot 1 \%(-\mathbf{0} \cdot 1 \text { to } 0.0) \\ & \mathbf{p}=\mathbf{0 . 0 0 1 7} \end{aligned}$.	Table 3D \ddagger, p 11
Minimum SaO_{2}	$\begin{aligned} & -1 \cdot 8 \%(-2 \cdot 3 \text { to }-1 \cdot 3) \\ & \mathrm{p}<0 \cdot 0001 \end{aligned}$	$\begin{aligned} & -0 \cdot 1 \%(-0 \cdot 3 \text { to } 0 \cdot 1) \\ & \mathrm{p}=0 \cdot 54 \end{aligned}$..	Table 3D, p 11
PLMI, events per h	$\begin{aligned} & 1.2(0.8 \text { to } 1.6) \\ & \mathrm{p}<0.0001 \end{aligned}$	$\begin{aligned} & 0 \cdot 0(-0 \cdot 1 \text { to } 0 \cdot 1) \\ & \mathrm{p}=0 \cdot 96 \end{aligned}$..	Table 3D, p 11

Note: Mixed effects coefficients are reported as estimate ($95 \% \mathrm{CI}$); p value. Bold values are statistically significant. Because most studies reporting AHI, mean and minimum SaO 2, and PLMI were first-night studies, only mean age and percentage of male participants were included in mixed-effects models. $\mathrm{SaO} 2=$ arterial oxygen saturation. $\mathrm{AHI}=$ apnea-hypopnea index. $\mathrm{PLMI}=$ periodic limb movement index.
*See Table 6A (p 20) for data stratified by age and night of sleep study.
\dagger See Table 6B (p 21) for data stratified by sex and night of sleep study.
\ddagger Due to low number of studies reporting male and female parameters separately, normative data stratified by age and sex was not tabulated.

SUPPLEMENTARY FIGURES

Figure S1A. Forest plot showing the effect of sex on REM latency (REML) for control groups assessed on the first night in the sleep laboratory. Control groups are divided into three subgroups: female, mixed (sorted by \% male), and male. The mean REML for each control group is represented by a square (size proportional to random effects weight), and the 95% confidence interval (CI) by the horizontal line passing through. Pooled REML estimates are represented by diamonds (width indicating associated $95 \% \mathrm{CI}$). A dashed vertical line is positioned at the total pooled REML estimate.

A

Figure S1B. Forest plot showing the effect of sex on REML for control groups assessed on the second night or later in the sleep laboratory. Legend is as for Fig S1A.

B

Figure S2A. Forest plot showing the effect of sex on mean arterial oxygen saturation (SaO 2) for control groups with a mean age of 18-34 years. Control groups are divided into three subgroups: female, mixed (sorted by $\%$ male), and male. The mean SaO 2 for each control group is represented by a square (size proportional to random effects weight), and the 95% confidence interval (CI) by the horizontal line passing through. Pooled mean SaO 2 estimates are represented by diamonds (width indicating associated $95 \% \mathrm{CI}$). A dashed vertical line is positioned at the total pooled mean SaO 2 estimate.

Figure S2B. Forest plot showing the effect of sex on mean SaO 2 for control groups with a mean age of 35-49 years. Legend is as for Fig S2A.

B

Figure S2C. Forest plot showing the effect of sex on mean SaO2 for control groups with a mean age of 50-64 years. Legend is as for Fig S2A.

C

Figure S2D. Forest plot showing the effect of sex on mean SaO2 for control groups with a mean age of 65+ years. Legend is as for Fig S2A.

D

Figure S3A. Forest plot showing the effect of sex on arousal index (AI) for control groups with a mean age of 18-34 years. Control groups are divided into three subgroups: female, mixed (sorted by $\%$ male), and male. The mean AI for each control group is represented by a square (size proportional to random effects weight), and the 95% confidence interval (CI) by the horizontal line passing through. Pooled AI estimates are represented by diamonds (width indicating associated $95 \% \mathrm{CI}$). A dashed vertical line is positioned at the total pooled AI estimate.

A

Figure S3B. Forest plot showing the effect of sex on AI for control groups with a mean age of 35-49 years. Legend is as for Fig S3A.

B

First Author (subgroup), Year
Female control groups
Baker FC et al., 2015
Moraes W et al. (females aged $35-39$ years), 2014
Moraes W et al. (females aged $40-44$ years), 2014
Moraes W et al. (females aged $45-49$ years), 2014
Dubrovsky B et al., 2014
Random effects model for subgroup
Heterogeneity: I -squared $=94 \cdot 6 \%$, tau-squared $=11$, p $<0 \cdot 0001$

Figure S3C. Forest plot showing the effect of sex on AI for control groups with a mean age of 50-64 years. Legend is as for Fig S3A.

C

Figure S3D. Forest plot showing the effect of sex on AI for control groups with a mean age of 65+ years. Legend is as for Fig S3A.

D

Figure S4A. Forest plot showing the effect of sex on apnea-hypopnea index (AHI) for control groups with a mean age of 18-34 years. Control groups are divided into three subgroups: female, mixed (sorted by $\%$ male), and male. The mean AHI for each control group is represented by a square (size proportional to random effects weight), and the 95% confidence interval (CI) by the horizontal line passing through. Pooled AHI estimates are represented by diamonds (width indicating associated $95 \% \mathrm{CI}$). A dashed vertical line is positioned at the total pooled AHI estimate.

A

Figure S4B. Forest plot showing the effect of sex on AHI for control groups with a mean age of 35-49 years. Legend is as for Fig S4A.

B

Table S10: Characteristics of studies included in meta-analysis.

	First author (subgroup within study)	Year	N	$\begin{aligned} & \text { Age } \\ & \text { (years) } \end{aligned}$	Sex (\% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
1.	Adachi T et al. ${ }^{4}$ (weight maintainers)	2011	16	29.6 (9.2)	63	TST, AHI, AI	YES	YES	NO	NO
	Adachi T et al. (weight gainers)	2011	20	29.7 (6.3)	60	TST, AHI, AI	YES	YES	NO	NO
2.	Aittokallio J et al. ${ }^{5}$	2009b	22	55.5 (1.2)	0	AHI, MSaO2, mSaO 2	YES	YES	NO	NO
3.	Aittokallio J et al. ${ }^{6}$	2009a	9	55.6 (1.1)	0	$\begin{aligned} & \mathrm{AHI}, \mathrm{MSaO} 2, \\ & \mathrm{mSaO} 2 \end{aligned}$	NO	YES	NO	NO
4.	Bahammam AS et al. ${ }^{7}$	2014	8	26.6 (4.9)	100	TST, SOL, REML, SE, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), PLMI, AI	YES	NO	NO	NO
5.	Bahammam AS et al. ${ }^{8}$	2012	8	32.0 (2.4)	100	TST, SOL, REML, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AI	YES	YES	NO	NO
6.	Crispim CA et al. ${ }^{9}$ (women)	2011	27	28.8 (6.6)	0	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	YES	YES	NO	NO
	Crispim CA et al. (men)	2011	25	27.2 (5.9)	100	TST, SOL, REML, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	YES	YES	NO	NO
7.	de Zambotti M et al. ${ }^{10}$	2012	15	22.3 (1.6)	0	TST, SOL, REML, SE, WASO	YES	YES	YES	NO
8.	Markwald RR et al. ${ }^{11}$	2016	29	24.0 (5.3)	72	$\begin{aligned} & \text { TST, SOL, SE, } \\ & \text { WASO } \end{aligned}$	YES	YES	YES	NO
9.	de Zambotti M et al. ${ }^{12}$	2014b	16	45.2 (9.1)	50	TST, SOL, REML, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	YES	YES	NO	NO
10.	de Zambotti M et al. ${ }^{13}$	2014a	14	24.4 (1.6)	50	TST, SOL, REML, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST),	YES	YES	YES	NO

	First author (subgroup within study)	Year	N	Age (years)	$\begin{aligned} & \hline \text { Sex } \\ & (\% \\ & \text { male) } \end{aligned}$	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
11.	Baker FC et al. ${ }^{14}$	2015	34	49.3 (2.6)	0	$\begin{aligned} & \text { TST, SOL, } \\ & \text { REML, SE, } \\ & \text { WASO, AHI, } \\ & \text { mSaO2, PLMI, AI } \end{aligned}$	YES	YES	YES	NO
12.	Cellini N et al. ${ }^{15}$	2014	13	24.3 (1.6)	46	$\begin{aligned} & \text { TST, SOL, SE, } \\ & \text { WASO } \end{aligned}$	YES	YES	YES	NO
13.	de Zambotti M et al. ${ }^{16}$	2015	11	29.1 (7.3)	0	TST, SOL, REML, SE, WASO, AI	YES	NO	NO	NO
14.	Petit E et al. ${ }^{17}$	2014	16	22.2 (1.7)	100	TST, SOL, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	YES	YES	NO	NO
15.	Kuna ST et al. ${ }^{18}$	2012	200	29.9 (7.2)	30	TST, SOL, REML, SE, WASO, AHI, AI	YES	NO	NO	NO
16.	Leufkens TRM et al. ${ }^{19}$	2014	21	61.7 (5.0)	62	TST, SOL, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST),	YES	YES	YES	NO
17.	Nayak C et al. ${ }^{20}$	2015	25	23.3 (3.7)	44	TST, SE, AHI, $\mathrm{MSaO} 2, \mathrm{mSaO} 2$, AI	YES	YES	NO	NO
18.	Nayak C et al. ${ }^{21}$	2016a	20	23.2 (3.8)	45	TST, SOL, SE, AHI, PLMI, AI	YES	YES	NO	NO
19.	Nayak C et al. ${ }^{22}$	2016b	25	26.3 (7.4)	24	TST, SE, AHI, PLMI, AI	YES	YES	NO	NO
20.	Kobayashi I et al. ${ }^{23}$	2012	23	22.6 (5.0)	65	$\begin{aligned} & \text { TST, SOL, } \\ & \text { WASO } \end{aligned}$	YES	YES	YES	NO
21.	St-Onge MP et al. ${ }^{24}$	2016	26	35.1 (5.1)	50	TST, SOL	YES	YES	NO	NO
22.	Perrier J et al. ${ }^{25}$	2015	10	46 (15)	40	TST, REML, SE	YES	YES	YES	NO
23.	Plante DT et al. ${ }^{26}$	2016	24	23.3 (4.0)	42	TST, SOL, REML, SE, WASO	YES	YES	YES	NO
24.	Landsness EC et al. ${ }^{27}$	2011	17	24.3 (3.7)	65	TST, REML, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AI	YES	NO	NO	NO
25.	Hulse BK et al. ${ }^{28}$	2011	12	21.9 (1.7)	50	TST, SOL, SE	YES	NO	NO	NO
26.	Goldstein MR et al. ${ }^{29}$	2012	15	21.4 (1.6)	47	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, AI	YES	NO	YES	NO

27.	First author (subgroup within study)	Year	N	Age (years)	Sex (\% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
	Plante DT et al. ${ }^{30}$ (females)	2012b	19	23.1 (6.2)	0	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AI	YES	YES	YES	NO
	Plante DT et al. (males)	2012b	11	29.4 (10.7)	100	TST, SOL, REML, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AI	YES	YES	YES	NO
28.	Plante DT et al. ${ }^{31}$	2012a	7	22.0 (1.3)	43	TST, SOL, REML, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AI	YES	YES	YES	NO
29.	Riedner BA et al. ${ }^{32}$	2016	8	41.6 (13.6)	25	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AI,	YES	YES	YES	NO
30.	Moraes W et al. ${ }^{33}$ (males aged 20-24 years)	2014	60	20-24 (MP)	100	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
	Moraes W et al. (males aged 2529 years)	2014	60	25-29 (MP)	100	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
	Moraes W et al. (males aged 3034 years)	2014	65	30-34 (MP)	100	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
	Moraes W et al. (males aged 3539 years)	2014	59	35-39 (MP)	100	TST, SOL, REML, SE, WASO,	NO	NO	NO	YES

First author (subgroup within study)	Year	N	Age (years)	Sex (\% male)	Sleep parameters provided N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO 2 , PLMI, AI	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
Moraes W et al. (males aged 4044 years)	2014	56	40-44 (MP)	100	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (males aged 4549 years)	2014	48	45-49 (MP)	100	TST, SOL, REML, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (males aged 5054 years)	2014	38	50-54 (MP)	100	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (males aged 5559 years)	2014	30	55-59 (MP)	100	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (males aged 6064 years)	2014	20	60-64 (MP)	100	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (males aged 6569 years)	2014	14	65-69 (MP)	100	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2,	NO	NO	NO	YES

First author (subgroup within study)	Year	N	Age (years)	$\begin{aligned} & \hline \text { Sex } \\ & (\% \\ & \text { male }) \end{aligned}$	Sleep parameters provided mSaO2, PLMI, AI	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
Moraes W et al. (males aged 7074 years)	2014	10	70-74 (MP)	100	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (males aged 7580 years)	2014	8	75-80 (MP)	100	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 20-24 years)	2014	46	20-24 (MP)	0	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 25-29 years)	2014	70	25-29 (MP)	0	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 30-34 years)	2014	64	30-34 (MP)	0	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 35-39 years)	2014	60	35-39 (MP)	0	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 40-44 years)	2014	72	40-44 (MP)	0	TST, SOL, REML, SE, WASO,	NO	NO	NO	YES

First author (subgroup within study)	Year	N	Age (years)	$\begin{aligned} & \hline \text { Sex } \\ & (\% \\ & \text { male }) \end{aligned}$	Sleep parameters provided N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO 2 , PLMI, AI	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
Moraes W et al. (females aged 45-49 years)	2014	78	45-49 (MP)	0	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 50-54 years)	2014	49	50-54 (MP)	0	TST, SOL, REML, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 55-59 years)	2014	49	55-59 (MP)	0	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 60-64 years)	2014	28	60-64 (MP)	0	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 65-69 years)	2014	26	65-69 (MP)	0	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
Moraes W et al. (females aged 70-74 years)	2014	16	70-74 (MP)	0	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2,	NO	NO	NO	YES

	First author (subgroup within study)	Year	N	Age (years)	$\begin{aligned} & \hline \text { Sex } \\ & (\% \\ & \text { male) } \end{aligned}$	Sleep parameters provided mSaO2, PLMI, AI	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
	Moraes W et al. (females aged 75-80 years)	2014	16	75-80 (MP)	0	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
31.	Saunamaki T et al. ${ }^{34}$	2009	20	43	100	AHI	YES	YES	YES	NO
32.	Hanlon EC et al. ${ }^{35}$	2016	14	23.4 (3.0)	79	TST, SE	YES	YES	YES	NO
33.	Rao MN et al. ${ }^{36}$	2015	14	27 (5)	57	TST	YES	YES	YES	NO
34.	McCann UD et al. ${ }^{37}$	2011	43	23.6 (21.6)	53	TST, SOL, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	YES	YES	YES	NO
35.	Zhou JY et al. ${ }^{38}$	2012	10	33.6 (13.1)	50	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	NO	YES	YES	NO
36.	Broussard JL et al. ${ }^{39}$	2015	19	23.5 (3.1)	100	$\begin{aligned} & \text { TST, N1(\%TST), } \\ & \text { N2(\%TST), } \\ & \text { N3(\%TST), } \\ & \text { REM(\%TST) } \end{aligned}$	YES	YES	NO	NO
37.	Christensen JAE et al. ${ }^{40}$	2016	23	56.7 (9.2)	30	SE, PLMI	YES	NO	NO	NO
38.	Reinhard MA et al. ${ }^{41}$	2014	38	39.6 (8.9)	45	TST, SOL, SE, WASO, AHI, PLMI, AI	YES	YES	YES	NO
39.	Vandekerchkho ve M et al. ${ }^{42}$	2012	28	22.4 (5.8)	54	TST, SOL, SE, WASO	YES	NO	YES	NO
40.	Jaimchariyatam N et al. ${ }^{43}$	2014	350	54.2 (19.8)	52	SOL, REML, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, mSaO2, PLMI, AI	YES	YES	YES	NO
41.	Mellman TA et al. ${ }^{44}$	2014	24	23.7 (5.8)	54	TST, SOL, REML, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	YES	YES	YES	NO
42.	Liu H et al. ${ }^{45}$	2014	26	40.5 (12.0)	38	TST, SOL, SE, WASO, N1(\%TST),	YES	YES	YES	NO

	First author (subgroup within study)	Year	N	Age (years)	Sex (\% male)	Sleep parameters provided N2(\%TST), N3(\%TST), REM(\%TST)	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
43.	Cervena K et al. ${ }^{46}$	2014	10	41.4 (13.1)	50	TST, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	YES	YES	YES	NO
44.	 Katami R ${ }^{47}$	2014	14	30.1 (10.7)	43	SE, N3(\%TST), REM(\%TST)	YES	NO	NO	NO
45.	Zinkhan M et al. ${ }^{48}$	2014	100	51.3 (13.0)	49	TST, SOL, SE, WASO, AHI, PLMI	NO	NO	NO	YES
46.	Bumb JM et al. ${ }^{49}$	2014	27	39.0 (13.1)	41	TST, SOL, REML, SE	YES	YES	YES	NO
47.	Mazzotti DR et al. ${ }^{50}$ (Young adults)	2014	15	24.3 (2.2)	100	TST, SOL, REML, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
	Mazzotti DR et al. (Older adults)	2014	13	65.5 (3.1)	100	TST, SOL, REML, SE, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	YES
	Mazzotti DR et al. (Oldest old adults)	2014	10	91.9 (6.1)	100	TST, SOL, REML, SE, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO 2 , PLMI, AI	NO	NO	NO	YES
48.	Krishnan P et al. ${ }^{51}$	2014	25	23.2 (3.0)	76	TST, SOL, REML, SE, WASO	YES	NO	NO	NO
49.	Lafortune M et al. ${ }^{52}$	2014	58	63.1 (8.5)	57	TST, SOL, REML, SE, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	YES	NO	YES	NO
50.	Brayet P et al. ${ }^{53}$	2014	32	63.7 (6.6)	69	SOL, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI	YES	YES	YES	NO
51.	Hao YL et al. ${ }^{54}$	2014	30	39.1 (7.5)	37	TST, SOL, REML, SE,	YES	YES	YES	NO

	First author (subgroup within study)	Year	N	Age (years)	$\begin{aligned} & \text { Sex } \\ & (\% \\ & \text { male }) \end{aligned}$	Sleep parameters provided WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AI	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
52.	$\begin{aligned} & \text { dos Santos DF } \\ & \text { et al. }{ }^{55} \end{aligned}$	2014	44	41.3 (10.0)	NR	SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, PLMI, AI	NO	YES	NO	NO
53.	BriançonMarjollet A et al. ${ }^{56}$	2014	16	49.3 (11.8)	63	$\begin{aligned} & \mathrm{AHI}, \mathrm{MSaO} 2, \\ & \mathrm{mSaO} 2 \end{aligned}$	NO	NO	NO	NO
54.	Ellis JG et al. ${ }^{57}$	2014	21	34.1 (13.8)	38	TST, SOL, REML, SE, WASO	YES	YES	YES	NO
55.	Da Woon J. et al. ${ }^{58}$	2014	10	38.7 (14.6)	80	TST, SOL, SE, WASO, AHI	YES	YES	YES	NO
56.	Lorenz RA et al. ${ }^{59}$	2014	50	69.5 (8.8)	30	$\begin{aligned} & \text { TST, SOL, SE, } \\ & \text { WASO } \end{aligned}$	NO	NO	NO	YES
57.	Meng J et al. ${ }^{60}$	2011	30	32.7 (5.9)	63	$\begin{aligned} & \mathrm{SE}, \mathrm{MSaO} 2, \\ & \mathrm{mSaO} 2 \end{aligned}$	YES	YES	NO	NO
58.	Joo EY et al. ${ }^{61}$	2010	44	47.2 (5.4)	100	$\begin{aligned} & \mathrm{AHI}, \mathrm{MSaO} 2 \\ & \mathrm{mSaO} 2, \mathrm{AI} \end{aligned}$	YES	YES	YES	NO
59.	Iranzo A et al. ${ }^{62}$	2010	10	NR	90	TST, SOL, REML, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, PLMI	YES	NO	NO	NO
60.	Steier J et al. ${ }^{63}$	2010	21	36 (17)	71	$\begin{aligned} & \text { TST, SE, AHI, } \\ & \text { MSaO2 } \end{aligned}$	NO	YES	NO	NO
61.	Calvin AD et al. ${ }^{64}$	2010	18	54.7 (16.8)	72	AHI	NO	NO	NO	NO
62.	McCann UD et al. ${ }^{65}$	2009	62	24.1	57	AHI	YES	YES	YES	NO
63.	Lederer DJ et al. ${ }^{66}$	2009	10	40 (9)	50	AHI, mSaO2	YES	YES	NO	NO
64.	Moser D et al. $(<60)^{67}$	2009	25	39.2 (11.0)	44	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	YES	NO	NO	NO
	Moser D et al. (>60)	2009	31	74.1 (7.6)	45	TST, SOL, REML, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	YES	NO	NO	NO
65.	Ferri R et al. ${ }^{68}$	2009	12	46.7 (15.2)	25	AI	YES	YES	YES	NO
66.	Spiebhofer J ${ }^{69}$	2016	15	24.9 (3.8)	87	AHI	NO	YES	NO	NO
67.	Zhang H et al. ${ }^{70}$	2015	9	39 (7)	100	$\begin{aligned} & \mathrm{AHI}, \mathrm{MSaO} 2, \\ & \mathrm{mSaO} 2 \end{aligned}$	YES	NO	NO	NO

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 68. \& \begin{tabular}{l}
First author (subgroup within study) \\
Qu Y et al. \({ }^{71}\)
\end{tabular} \& Year

2015 \& N

10 \& Age

(years) \& | Sex |
| :--- |
| (\% |
| male) |
| NR | \& Sleep parameters provided \& Exclusion criteria stated for sleep disorders NO \& Exclusion criteria stated for medical disorders NO \& Exclusion criteria stated for psychiatric disorders NO \& Recruited from populationbased studies NO

\hline 68. \& Qu Y et al.' \& 2015 \& 10 \& 44.7 (11.9) \& NR \& MSaO2, mSaO2 \& \& \& \&

\hline 69. \& Chowduri S et al^{72} \& 2015 \& 14 \& 62 (8) \& 43 \& AHI \& NO \& YES \& NO \& NO

\hline 70. \& Orr WC et al. ${ }^{73}$ \& 2014 \& 25 \& 27.3 (9.3) \& 28 \& $$
\begin{aligned}
& \text { TST, SOL, } \\
& \text { WASO, AHI }
\end{aligned}
$$ \& YES \& YES \& YES \& NO

\hline 71. \& Uygunoglu U et al. ${ }^{74}$ \& 2013 \& 44 \& 35.4 (8.7) \& 42 \& | TST, SOL, SE, WASO, |
| :--- |
| N1 (\%TST), |
| N2(\%TST), |
| N3(\%TST), |
| REM(\%TST), |
| RDI, MSaO2, |
| mSaO2, PLMI | \& NO \& NO \& NO \& NO

\hline 72. \& Sasai T et al. ${ }^{75}$ \& 2013 \& 17 \& 59.5 (5.6) \& 77 \& AHI, PLMI, AI \& YES \& NO \& NO \& NO

\hline 73. \& Mork PJ et al. ${ }^{76}$ \& 2013 \& 22 \& 54.2 (8.2) \& 0 \& TST, SOL, REML, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), PLMI, AI \& NO \& YES \& NO \& NO

\hline 74. \& Zavalko IM et al. ${ }^{77}$ \& 2013 \& 6 \& NR \& 100 \& $$
\begin{aligned}
& \text { N1(\%TST), } \\
& \text { N2(\%TST), } \\
& \text { N3(\%TST), AI }
\end{aligned}
$$ \& NO \& YES \& NO \& NO

\hline 75. \& Jung DW et al. ${ }^{78}$ \& 2013 \& 10 \& 28.7 (3.2) \& 60 \& SOL \& YES \& YES \& YES \& NO

\hline 76. \& Rauchs G et al. ${ }^{79}$ \& 2013 \& 14 \& 75.1 (4.6) \& 56 \& $$
\begin{aligned}
& \text { TST, SOL, SE, } \\
& \text { WASO }
\end{aligned}
$$ \& YES \& NO \& YES \& NO

\hline 77. \& Videnovic A et al. ${ }^{80}$ \& 2013 \& 10 \& 62.7 (11.5) \& 80 \& TST, SOL, REML, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST) \& NO \& NO \& NO \& NO

\hline 78. \& Cheng P et al. ${ }^{81}$ \& 2013 \& 29 \& 32.2 \& 52 \& AHI \& YES \& NO \& YES \& NO

\hline 79. \& Della Marca G et al. ${ }^{82}$ \& 2013 \& 25 \& 61.9 (8.6) \& 52 \& | TST, SOL, |
| :--- |
| WASO, |
| N1 (\%TST), |
| N2(\%TST), |
| N3(\%TST), |
| REM(\%TST), AI | \& NO \& NO \& NO \& NO

\hline 80. \& Benbir G et al. ${ }^{83}$ \& 2013 \& 20 \& 27.6 (11.2) \& 55 \& TST, SOL, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO 2 , PLMI \& NO \& NO \& NO \& NO

\hline 81. \& Joo EY et al. ${ }^{84}$ \& 2013 \& 36 \& 43.7 (5.3) \& 100 \& AHI \& YES \& YES \& YES \& NO

\hline 82. \& D'Rozario AL et al. ${ }^{85}$ \& 2013 \& 9 \& 27.8 (3.7) \& 89 \& $$
\begin{aligned}
& \text { TST, SE, AHI, } \\
& \mathrm{mSaO} 2, \mathrm{AI}
\end{aligned}
$$ \& YES \& YES \& YES \& NO

\hline 83. \& Vollono C et al. ${ }^{86}$ (Matched \& 2013 \& 8 \& 46.7 (10.7) \& 25 \& TST, SOL, SE, WASO, AHI, AI \& NO \& NO \& NO \& NO

\hline
\end{tabular}

	First author (subgroup within study)	Year	N	Age (years)	$\begin{aligned} & \hline \text { Sex } \\ & (\% \\ & \text { male) } \end{aligned}$	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
	Controls)									
	Vollono C et al. (Controls)	2013	55	54.2 (13.0)	42	TST, SOL, SE, WASO, AHI, AI	YES	YES	YES	NO
84.	Robey E et al. ${ }^{87}$	2013	11	26.0 (4.4)	100	TST, SOL, REML, SE, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	NO	NO	NO	NO
85.	Bruno RM et al. ${ }^{88}$	2013	20	51.0 (7.9)	75	AHI, mSaO2	YES	YES	NO	NO
86.	Opie GM et al. ${ }^{89}$	2013	11	43.0 (10.3)	82	SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, AI	YES	NO	YES	NO
87.	Wong SN et al. ${ }^{90}$	2013	12	25.2 (4.0)	25	TST, SOL, SE, WASO, N3(\%TST), REM(\%TST)	YES	YES	NO	NO
88.	Sorenson GL et al. ${ }^{91}$	2013	22	32.2 (8.4)	27	TST, SOL, REML, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	YES	NO	NO	NO
89.	Shaikh ZF et al. ${ }^{92}$	2013	50	52 (11)	84	AHI	NO	NO	NO	NO
90.	Garcia-Lorenzo D et al. ${ }^{93}$	2013	19	60.2 (8.3)	53	TST, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	NO	NO	NO	NO
91.	Perin C et al. ${ }^{94}$	2012	25	25.5 (7.3)	48	SE, N3(\%TST), REM(\%TST), $\mathrm{MSaO} 2, \mathrm{mSaO} 2$, AI	YES	YES	NO	NO
92.	Huang L et al. ${ }^{95}$	2012	48	38 (12)	42	TST, SOL, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AI	YES	YES	YES	NO
93.	Wienecke M et al. ${ }^{96}$	2012	10	63.4 (8.0)	50	TST, REML, SE, AHI, PLMI, AI	YES	NO	NO	NO
94.	Imbach LL et al. ${ }^{97}$	2012	14	30 (8)	43	TST, REML, SE, AHI, PLMI, AI	YES	NO	NO	NO
95.	Poirrier AL et al. ${ }^{98}$	2012	18	50.1 (6.6)	100	AHI	YES	NO	NO	NO
96.	Ferri R et al. ${ }^{99}$	2012	19	67.5 (7.3)	37	TST, SOL, REML, SE	YES	NO	YES	NO
97.	Tascilar NF et al. ${ }^{100}$	2012	21	38.2 (8.2)	33	$\begin{aligned} & \text { TST, SOL, } \\ & \text { REML, SE, } \\ & \text { WASO, } \\ & \text { N1(\%TST), } \end{aligned}$	YES	NO	YES	NO

	First author (subgroup within study)	Year	N	Age (years)	Sex (\% male)	Sleep parameters provided N2(\%TST), N3(\%TST), REM(\%TST), AHI, mSaO2, PLMI, AI	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
98.	Sorensen GL et al. ${ }^{101}$	2012	15	62.4 (9.7)	53	TST, SOL, REML, SE, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AI	NO	NO	YES	NO
99.	King J et al. ${ }^{102}$	2012	6	24.7 (3.3)	67	TST, SOL, REML, SE, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), $\mathrm{MSaO} 2, \mathrm{mSaO} 2$	YES	YES	NO	NO
100.	Benbir G et al. ${ }^{103}$	2012	35	65.7 (10.1)	69	TST, SOL, REML, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI	NO	NO	NO	NO
	Scatena M et al. ${ }^{104}$	2012	25	44.3 (18.4)	52	TST, SOL, SE	NO	NO	NO	NO
102.	Piano C et al. ${ }^{105}$	2015	30	56.5 (11.8)	47	TST, SOL, SE, WASO, N1 (\%TST), N2(\%TST), N3(\%TST), REM(\%TST), mSaO 2 , AI	YES	YES	NO	NO
103.	Gracitelli CP et al. ${ }^{106}$	2015	13	56.8 (7.8)	31	TST, SOL, REML, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, mSaO2, PLMI, AI	NO	NO	NO	NO
104.	Chen WJ et al. ${ }^{107}$	2015	20	44 (8)	90	SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, mSaO2, AI	NO	YES	NO	NO
105.	Gunbey E et al. ${ }^{108}$	2015	15	50.2 (13.5)	73	AHI, mSaO2	NO	YES	NO	NO
106.	Pont Sunyer C et al. ${ }^{109}$	2015	14	50.8 (16.0)	50	TST, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, PLMI, AI	NO	NO	NO	NO

	First author (subgroup within study)	Year	N	$\begin{aligned} & \hline \text { Age } \\ & \text { (years) } \end{aligned}$	$\begin{aligned} & \hline \text { Sex } \\ & (\% \\ & \text { male }) \end{aligned}$	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
107.	Chen X et al. ${ }^{110}$	2015	40	34.5 (10.0)	62	$\begin{aligned} & \mathrm{AHI}, \mathrm{MSaO} 2, \\ & \mathrm{mSaO} 2 \end{aligned}$	YES	YES	YES	NO
108.	Dang Vu TT et al. ${ }^{111}$	2015	12	21.1 (2.4)	17	TST, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, AI	YES	YES	YES	NO
109.	Neutel D et al. ${ }^{112}$	2015	29	47.5 (12.3)	48	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, PLMI	NO	NO	NO	NO
110.	Arnulf I et al. ${ }^{113}$	2015	74	66.6 (6.1)	82	TST, SOL, REML, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, PLMI, AI	NO	NO	NO	NO
111.	Margis R et al. ${ }^{114}$	2015	9	64.8 (6.3)	40	TST, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, AI	YES	NO	NO	NO
112.	Lin YH et al. ${ }^{115}$	2015	14	24.6 (3.6)	43	$\begin{aligned} & \text { TST, SOL, SE, } \\ & \text { N1(\%TST), } \\ & \text { N2(\%TST), } \\ & \text { N3(\%TST), } \\ & \text { REM(\%TST) } \end{aligned}$	YES	YES	YES	NO
113.	Shin M et al. ${ }^{116}$	2015	9	23.3 (4.1)	67	$\begin{aligned} & \text { TST, SOL, SE, } \\ & \text { WASO } \end{aligned}$	YES	YES	NO	NO
114.	Koyama T et al. ${ }^{117}$	2015	10	21.9 (3.3)	100	AHI	YES	YES	NO	NO
115.	Mariotti P et al. ${ }^{118}$	2015	30	66.8 (10.0)	57	$\begin{aligned} & \text { TST, SOL, SE, } \\ & \text { WASO } \end{aligned}$	NO	NO	NO	NO
116.	Bioulac S et al. ${ }^{119}$	2015	19	36.3 (10.5)	47	TST, SE	YES	YES	YES	NO
117.	Baril AA et al. ${ }^{120}$	2015	20	64.1 (7.1)	60	$\begin{aligned} & \mathrm{SE}, \mathrm{AHI}, \mathrm{MSaO} 2, \\ & \mathrm{mSaO} 2 \end{aligned}$	YES	YES	YES	NO
118.	Djonlagic I et al. ${ }^{121}$	2015	15	37.3 (10.5)	NR	TST, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, mSaO2, AI	YES	YES	YES	NO
119.	Fogel SM et al. ${ }^{122}$	2015	12	21.8 (2.9)	33	$\begin{aligned} & \text { TST, N1(\%TST), } \\ & \text { N2(\%TST), } \\ & \text { N3(\%TST), } \\ & \text { REM(\%TST) } \end{aligned}$	YES	YES	YES	NO
120.	Goder R et al. ${ }^{123}$	2015	16	28.3 (6.1)	44	$\begin{aligned} & \text { TST, SOL, SE, } \\ & \text { N1(\%TST), } \\ & \text { N2(\%TST), } \\ & \text { N3(\%TST), } \end{aligned}$	NO	NO	YES	NO

	First author (subgroup within study)	Year	N	Age (years)	$\begin{aligned} & \hline \text { Sex } \\ & (\% \\ & \text { male }) \end{aligned}$	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
						REM(\%TST)				
121.	van Gilst MM et al. ${ }^{124}$	2015	20	58.5 (7.5)	58	$\begin{aligned} & \text { TST, SOL, SE, } \\ & \text { N1(\%TST), } \\ & \text { N2(\%TST), } \\ & \text { N3(\%TST), } \\ & \text { REM(\%TST) } \end{aligned}$	NO	NO	YES	NO
122.	Lin CC et al. ${ }^{125}$	2016	20	43 (8)	90	SE, AI	NO	YES	NO	NO
123.	Eltawdy M et al. ${ }^{126}$	2016	20	40.3 (17.3)	75	TST, SOL, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), mSaO2, PLMI	NO	NO	NO	NO
124.	Chaparro Vargas R et al. ${ }^{127}$	2016	10	31.5 (11.3)	50	SOL, REML	NO	NO	NO	NO
125.	Arnaldi D et al. ${ }^{128}$	2016	10	61 (7)	50	$\begin{aligned} & \text { TST, REML, SE, } \\ & \text { N1(\%TST), } \\ & \text { N2(\%TST), } \\ & \text { N3(\%TST), } \\ & \text { REM(\%TST), } \\ & \text { AHI } \end{aligned}$	NO	NO	NO	NO
126.	Liao H et al. ${ }^{129}$	2016	20	59.9 (3.7)	55	$\begin{aligned} & \text { TST, SOL, SE, } \\ & \text { N3(\%TST), } \\ & \text { REM(\%TST), } \\ & \text { AHI } \end{aligned}$	NO	YES	NO	NO
127.	Bagai K et al. ${ }^{130}$	2016	15	35.3 (10.5)	13	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, MSaO2, PLMI, AI	YES	NO	NO	NO
128.	Zhao D et al. ${ }^{131}$	2016	10	36.5 (2.3)	100	AHI	YES	NO	NO	NO
129.	Lo JC et al. ${ }^{132}$	2014	14	66.6 (4.1)	50	$\begin{aligned} & \text { TST, SOL, SE, } \\ & \text { WASO } \end{aligned}$	NO	NO	YES	NO
130.	Ooms et al. ${ }^{133}$	2014	13	49.4 (5.5)	100	TST, SE, WASO	YES	NO	NO	NO
131.	Deliens G et al. ${ }^{134}$	2013	25	26.2 (4.7)	NR	TST, SOL	YES	NO	YES	NO
132.	Mascetti L et al. ${ }^{135}$ (Val/Val)	2013	14	21.7 (1.6)	43	TST, REML	YES	YES	YES	NO
	Mascetti L et al. (Met carriers)	2013	15	21.6 (1.8)	47	TST, REML	YES	YES	YES	NO
133.	Broussard JL et al. ${ }^{136}$	2012	7	23.7 (3.8)	86	TST	YES	YES	NO	NO
134.	Booth JN et ul. ${ }^{137}$	2012	43	26 (4)	44	TST, SOL, REML, SE, WASO, AI	YES	YES	NO	NO
135.	Dubé J et al. ${ }^{138}$ (Older adults)	2015	33	60.4 (5.7)	46	$\begin{aligned} & \text { TST, SOL, SE, } \\ & \text { WASO, AHI, } \\ & \text { mSaO2, PLMI, AI } \end{aligned}$	YES	NO	YES	NO

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
First author (subgroup within study) \\
Dubé J et al. (Younger adults)
\end{tabular} \& Year

2015 \& \mathbf{N}

30 \& $\begin{aligned} & \text { Age } \\ & \text { (years) }\end{aligned}$

23.5 (2.8) \& \begin{tabular}{l}
Sex

(\% male)
$$
53
$$

 \&

Sleep parameters provided

TST, SOL, SE, WASO, AHI, mSaO2, PLMI, AI
\end{tabular} \& Exclusion criteria stated for sleep disorders YES \& Exclusion criteria stated for medical disorders NO \& Exclusion criteria stated for psychiatric disorders YES \& Recruited from populationbased studies

NO

\hline 136. \& $$
\begin{aligned}
& \text { Ujma PP et } \\
& \text { al. }{ }^{139}
\end{aligned}
$$ \& 2015 \& 79 \& 23.3 (2.6) \& 100 \& TST, SOL, REML \& YES \& NO \& YES \& NO

\hline 137. \& Zanini MA et al. ${ }^{140}$ \& 2015 \& 20 \& 19.1 (4.0) \& 65 \& TST, SOL, REML, SE, WASO, AHI, PLMI, AI \& NO \& YES \& YES \& NO

\hline 138. \& Hoshikawa M et al. ${ }^{141}$ \& 2015 \& 7 \& 23.8 (3.0) \& 100 \& TST, SOL, REML, SE, WASO, MSaO2, mSaO 2 \& NO \& NO \& NO \& NO

\hline 139. \& Smith MG et al. ${ }^{142}$ \& 2016 \& 24 \& 22.9 (2.8) \& 46 \& $$
\begin{aligned}
& \text { SOL, REML, SE, } \\
& \text { WASO, AI }
\end{aligned}
$$ \& YES \& NO \& NO \& NO

\hline 140. \& Bouazizi E et al. ${ }^{143}$ \& 2016 \& 55 \& 26.6 (6.4) \& 78 \& TST, SE, AHI \& NO \& NO \& NO \& NO

\hline 141. \& Dubrovsky B et al. ${ }^{144}$ \& 2014 \& 46 \& 36.1 (13.5) \& 0 \& TST, SOL, REML, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, PLMI, AI \& NO \& NO \& NO \& NO

\hline 142. \& Glos M et al. ${ }^{145}$ \& 2014 \& 11 \& 24.5 (10.0) \& 100 \& $$
\begin{aligned}
& \text { TST, SOL, SE, } \\
& \text { WASO, } \\
& \text { N1(\%TST), } \\
& \text { N2(\%TST), } \\
& \text { N3(\%TST), } \\
& \text { REM(\%TST) }
\end{aligned}
$$ \& YES \& YES \& YES \& NO

\hline 143. \& Wilhelm I et al. ${ }^{146}$ \& 2014 \& 17 \& 21.3 (3.0) \& 82 \& | TST, SOL, |
| :--- |
| N1 (\%TST), |
| N2(\%TST), |
| N3(\%TST), |
| REM(\%TST) | \& YES \& NO \& YES \& NO

\hline 144. \& Hachul H et al. ${ }^{147}$ \& 2011 \& 17 \& NR \& 0 \& $$
\begin{aligned}
& \text { AHI, mSaO2, } \\
& \text { PLMI }
\end{aligned}
$$ \& NO \& YES \& YES \& NO

\hline 145. \& Biermasz NR et al. ${ }^{148}$ \& 2011 \& 17 \& NR \& 65 \& TST, SOL, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AHI, mSaO2 \& YES \& YES \& NO \& NO

\hline 146. \& Donga E et al. ${ }^{149}$ \& 2010 \& 9 \& 44.6 (14.7) \& 56 \& $$
\begin{aligned}
& \text { TST, N1(\%TST), } \\
& \text { N2(\%TST), } \\
& \text { N3(\%TST), } \\
& \text { REM(\%TST) }
\end{aligned}
$$ \& YES \& NO \& YES \& NO

\hline 147. \& Schytz HW et al. ${ }^{150}$ \& 2013 \& 13 \& 52.0 (10.1) \& 77 \& AHI \& NO \& YES \& NO \& NO

\hline 148. \& Garcia CEV et al. ${ }^{151}$ \& 2013 \& 10 \& 39.0 (9.5) \& 60 \& AHI, mSaO2, AI \& NO \& YES \& NO \& NO

\hline 149. \& Abe S et al. ${ }^{152}$ \& 2013 \& 9 \& 65.1 (12.0) \& 56 \& AHI, PLMI, AI \& NO \& NO \& NO \& NO

\hline 150. \& Wuyts J et al. ${ }^{153}$ \& 2012 \& 16 \& 23.9 (3.2) \& 50 \& $$
\begin{aligned}
& \text { TST, SOL, SE, } \\
& \text { N1(\%TST), } \\
& \text { N2(\%TST), } \\
& \text { N3(\%TST), }
\end{aligned}
$$ \& YES \& YES \& NO \& NO

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& First author (subgroup within study) \& Year \& N \& \[
\begin{aligned}
\& \text { Age } \\
\& \text { (years) }
\end{aligned}
\] \& Sex
(\%
male) \& Sleep parameters provided
REM(\%TST) \& Exclusion criteria stated for sleep disorders \& Exclusion criteria stated for medical disorders \& Exclusion criteria stated for psychiatric disorders \& Recruited from populationbased studies \\
\hline \[
151 .
\] \& MontgomeryDowns HE et al. \({ }^{154}\) \& 2012 \& 24 \& 26.1 \& 60 \& TST, SE \& YES \& NO \& NO \& NO \\
\hline 152. \& Biard K et al. \({ }^{155}\) \& 2015 \& 20 \& NR \& 0 \& TST, SOL, REML, SE, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST) \& YES \& YES \& YES \& NO \\
\hline 153. \& Guan W et al. \({ }^{156}\) \& 2015 \& 7 \& 32.9 (22.0) \& NR \& \begin{tabular}{l}
TST, SE, \\
N1(\%TST), \\
N2(\%TST), \\
N3(\%TST), \\
REM(\%TST), \\
\(\mathrm{MSaO} 2, \mathrm{mSaO} 2\), \\
AI
\end{tabular} \& YES \& YES \& NO \& NO \\
\hline 154. \& Cepeda FX et al. \({ }^{157}\) \& 2015 \& 16 \& 46.0 (6.8) \& 44 \& mSaO2, AI \& NO \& NO \& NO \& NO \\
\hline 155. \& Hudson JD et al. \({ }^{158}\) \& 2015 \& 25 \& NR \& 59 \& \begin{tabular}{l}
N1(\%TST), \\
N2(\%TST), \\
N3(\%TST), \\
REM(\%TST), \\
PLMI, AI,s
\end{tabular} \& YES \& YES \& YES \& NO \\
\hline 156.

157 \& Ko CH et al. ${ }^{159}$ \& 2015 \& 13

14 \& 20-23 (MP) \& 46

64 \& | TST, SOL, SE, |
| :--- |
| WASO, |
| N1 (\%TST), |
| N2(\%TST), |
| N3(\%TST), |
| REM(\%TST), AI | \& YES

YES \& YES \& YES \& NO

\hline 157. \& Barut BO et al. ${ }^{160}$ \& 2015 \& 14 \& 50.6 (8.6) \& 64 \& | TST, SOL, SE, WASO, |
| :--- |
| N1 (\%TST), |
| N2(\%TST), |
| N3(\%TST), |
| REM(\%TST), |
| $\mathrm{MSaO} 2, \mathrm{mSaO} 2$, |
| PLMI, AI | \& YES \& NO \& NO \& NO

\hline \multirow[t]{2}{*}{158.} \& Varga AW et al. ${ }^{161}$ (Younger subjects) \& 2016 \& 18 \& 20 \& 44 \& | TST, N1(\%TST), |
| :--- |
| N2(\%TST), |
| N3(\%TST), |
| REM(\%TST) | \& YES \& YES \& NO \& NO

\hline \& Varga AW et al. (Older subjects) \& 2016 \& 13 \& 68.2 \& 39 \& | TST, N1(\%TST), |
| :--- |
| N2(\%TST), |
| N3(\%TST), |
| REM(\%TST) | \& YES \& YES \& NO \& NO

\hline 159. \& Landry S et al. ${ }^{162}$ \& 2014 \& 12 \& 52.8 (6.7) \& 75 \& TST, WASO, AI \& YES \& NO \& NO \& NO

\hline 160. \& Rao V et al. ${ }^{163}$ \& 2011 \& 7 \& 25 \& 86 \& TST, SOL, REML, SE, WASO, PLMI \& YES \& YES \& YES \& NO

\hline 161. \& Pamidi S et al. ${ }^{164}$ \& 2012 \& 20 \& 22.5 (2.7) \& 100 \& $$
\begin{aligned}
& \text { TST, SE, mSaO2, } \\
& \text { AI }
\end{aligned}
$$ \& YES \& YES \& NO \& NO

\hline 162. \& Simen AA et al. ${ }^{165}$ \& 2015 \& 20 \& 33.9 \& 100 \& $$
\begin{aligned}
& \text { TST, SOL, } \\
& \text { REML, SE, } \\
& \text { WASO }
\end{aligned}
$$ \& NO \& NO \& NO \& NO

\hline 163. \& Poryazova R et al. ${ }^{166}$ \& 2015 \& 8 \& 51.9 (16.4) \& 38 \& TST, WASO \& NO \& NO \& NO \& NO

\hline
\end{tabular}

	First author (subgroup within study)	Year	N	$\begin{aligned} & \text { Age } \\ & \text { (years) } \end{aligned}$	Sex (\% male)	Sleep parameters provided	Exclusion criteria stated for sleep disorders	Exclusion criteria stated for medical disorders	Exclusion criteria stated for psychiatric disorders	Recruited from populationbased studies
164.	Lustenberger C et al. ${ }^{167}$	2015	20	23.3 (9.4)	100	$\begin{aligned} & \text { TST, SOL, SE, } \\ & \text { WASO } \end{aligned}$	YES	YES	YES	NO
165.	Landry S et al. ${ }^{168}$	2016	14	47.0 (10.1)	43	TST, SOL, SE, WASO, mSaO2, PLMI, AI	YES	YES	YES	NO
166.	Buchmann A et al. ${ }^{169}$	2011	20	25.2 (4.1)	55	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	NO	NO	NO	NO
167.	Chennaoui M et al. ${ }^{170}$	2011	12	29.1 (3.3)	100	TST, SOL, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST)	YES	YES	NO	NO
168.	Cho JR et al. ${ }^{171}$	2013	10	27	60	TST, REML, SE, WASO, N1(\%TST), N2(\%TST), N3(\%TST), REM(\%TST), AI	YES	YES	YES	NO
169.	Westerberg CE et al. ${ }^{172}$	2012	16	72.7 (5.1)	19	TST, SOL, REML, SE, WASO	YES	YES	YES	NO

Abbreviations: Total sleep time (TST), sleep efficiency (SE), wake after sleep onset (WASO), sleep onset latency (SOL), REM latency (REML), arousal index (AI), as a percentage of total sleep time (\%TST), apnea-hypopnea index (AHI), mean arterial oxygen saturation $\left(\mathrm{MSaO}_{2}\right)$, minimum arterial oxygen saturation $\left(\mathrm{mSaO}_{2}\right)$, and periodic limb movement index (PLMI).

Parameter not reported (NR).
Age data expressed as mean (SD). For studies that did not provide a mean age, the midpoint of the provided age range was estimated to be the mean age in this meta-analysis; this is indicated by "MP" beside the age range listed above.

References for Supplementary Appendix

1. Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc 2009; 172(1): 137-59.
2. Nagashima K, Noma H, Furukawa TA. Prediction intervals for random-effects meta-analysis: A confidence distribution approach. Stat Methods Med Res 2018: 962280218773520.
3. Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software 2010; 36(3): 1-48.
4. Adachi T, Sert-Kuniyoshi FH, Calvin AD, et al. Effect of weight gain on cardiac autonomic control during wakefulness and sleep. Hypertension 2011; 57(4): 723-30.
5. Aittokallio J, Saaresranta T, Virkki A, et al. Transcutaneous carbon dioxide profile during sleep reveals metabolic risk factors in post-menopausal females. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology 2009; 34(5): 1132-9.
6. Aittokallio J, Hiissa J, Saaresranta T, Polo-Kantola P, Aittokallio T, Polo O. Nocturnal transcutaneous carbon dioxide tension in postmenopausal estrogen users and non-users. Menopause international 2009; 15(3): 10712.
7. Bahammam AS, Almushailhi K, Pandi-Perumal SR, Sharif MM. Intermittent fasting during Ramadan: does it affect sleep? Journal of sleep research 2014; 23(1): 35-43.
8. Bahammam AS, Sharif MM, Spence DW, Pandi-Perumal SR. Sleep architecture of consolidated and split sleep due to the dawn (Fajr) prayer among Muslims and its impact on daytime sleepiness. Annals of thoracic medicine 2012; 7(1): 36-41.
9. Crispim CA, Zimberg IZ, dos Reis BG, Diniz RM, Tufik S, de Mello MT. Relationship between food intake and sleep pattern in healthy individuals. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine 2011; 7(6): 659-64.
10. de Zambotti M, Covassin N, Cellini N, Sarlo M, Torre J, Stegagno L. Hemodynamic and autonomic modifications during sleep stages in young hypotensive women. Biol Psychol 2012; 91(1): 22-7.
11. Markwald RR, Bessman SC, Reini SA, Drummond SP. Performance of a Portable Sleep Monitoring Device in Individuals with High Versus Low Sleep Efficiency. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine 2016; 12(1): 95-103.
12. de Zambotti M, Baker FC, Sugarbaker DS, Nicholas CL, Trinder J, Colrain IM. Poor autonomic nervous system functioning during sleep in recently detoxified alcohol-dependent men and women. Alcoholism, clinical and experimental research 2014; 38(5): 1373-80.
13. de Zambotti M, Cellini N, Baker FC, Colrain IM, Sarlo M, Stegagno L. Nocturnal cardiac autonomic profile in young primary insomniacs and good sleepers. International journal of psychophysiology : official journal of the International Organization of Psychophysiology 2014; 93(3): 332-9.
14. Baker FC, Willoughby AR, Sassoon SA, Colrain IM, de Zambotti M. Insomnia in women approaching menopause: Beyond perception. Psychoneuroendocrinology 2015; 60: 96-104.
15. Cellini N, de Zambotti M, Covassin N, Sarlo M, Stegagno L. Working memory impairment and cardiovascular hyperarousal in young primary insomniacs. Psychophysiology 2014; 51(2): 206-14.
16. de Zambotti M, Colrain IM, Baker FC. Interaction between reproductive hormones and physiological sleep in women. The Journal of clinical endocrinology and metabolism 2015; 100(4): 1426-33.
17. Petit E, Mougin F, Bourdin H, Tio G, Haffen E. A 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions. European journal of applied physiology 2014; 114(2): 305-15.
18. Kuna ST, Maislin G, Pack FM, et al. Heritability of performance deficit accumulation during acute sleep deprivation in twins. Sleep 2012; 35(9): 1223-33.
19. Leufkens TR, Ramaekers JG, de Weerd AW, Riedel WJ, Vermeeren A. On-the-road driving performance and driving-related skills in older untreated insomnia patients and chronic users of hypnotics. Psychopharmacology 2014; 231(14): 2851-65.
20. Nayak C, Sinha S, Nagappa M, Thennarasu K, Taly AB. Lack of heart rate variability during apnea in patients with juvenile myoclonic epilepsy (JME). Sleep \& breathing = Schlaf \& Atmung 2015; 19(4): 1175-83.
21. Nayak CS, Sinha S, Nagappa M, Kandavel T, Taly AB. Effect of valproate on the sleep microstructure of juvenile myoclonic epilepsy patients - a cross-sectional CAP based study. Sleep medicine 2016; 17: 129-33.
22. Nayak C, Sinha S, Nagappa M, et al. Study of sleep microstructure in patients of migraine without aura. Sleep \& breathing $=$ Schlaf \& Atmung 2016; 20(1): 263-9.
23. Kobayashi I, Huntley E, Lavela J, Mellman TA. Subjectively and objectively measured sleep with and without posttraumatic stress disorder and trauma exposure. Sleep 2012; 35(7): 957-65.
24. St-Onge MP, Roberts A, Shechter A, Choudhury AR. Fiber and Saturated Fat Are Associated with Sleep Arousals and Slow Wave Sleep. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine 2016; 12(1): 19-24.
25. Perrier J, Clochon P, Bertran F, et al. Specific EEG sleep pattern in the prefrontal cortex in primary insomnia. PloS one 2015; 10(1): e0116864.
26. Plante DT, Goldstein MR, Cook JD, et al. Effects of partial sleep deprivation on slow waves during nonrapid eye movement sleep: A high density EEG investigation. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2016; 127(2): 1436-44.
27. Landsness EC, Ferrarelli F, Sarasso S, et al. Electrophysiological traces of visuomotor learning and their renormalization after sleep. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2011; 122(12): 2418-25.
28. Hulse BK, Landsness EC, Sarasso S, et al. A postsleep decline in auditory evoked potential amplitude reflects sleep homeostasis. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2011; 122(8): 1549-55.
29. Goldstein MR, Plante DT, Hulse BK, et al. Overnight changes in waking auditory evoked potential amplitude reflect altered sleep homeostasis in major depression. Acta psychiatrica Scandinavica 2012; 125(6): 46877.
30. Plante DT, Landsness EC, Peterson MJ, et al. Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation. BMC psychiatry 2012; 12: 146.
31. Plante DT, Landsness EC, Peterson MJ, et al. Altered slow wave activity in major depressive disorder with hypersomnia: a high density EEG pilot study. Psychiatry research 2012; 201(3): 240-4.
32. Riedner BA, Goldstein MR, Plante DT, et al. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study. Sleep 2016; 39(4): 801-12.
33. Moraes W, Piovezan R, Poyares D, Bittencourt LR, Santos-Silva R, Tufik S. Effects of aging on sleep structure throughout adulthood: a population-based study. Sleep medicine 2014; 15(4): 401-9.
34. Saunamaki T, Himanen SL, Polo O, Jehkonen M. Executive dysfunction in patients with obstructive sleep apnea syndrome. European neurology 2009; 62(4): 237-42.
35. Hanlon EC, Tasali E, Leproult R, et al. Sleep Restriction Enhances the Daily Rhythm of Circulating Levels of Endocannabinoid 2-Arachidonoylglycerol. Sleep 2016; 39(3): 653-64.
36. Rao MN, Neylan TC, Grunfeld C, Mulligan K, Schambelan M, Schwarz JM. Subchronic sleep restriction causes tissue-specific insulin resistance. The Journal of clinical endocrinology and metabolism 2015; 100(4): 166471.
37. McCann UD, Edwards RR, Smith MT, et al. Altered pain responses in abstinent (+/-)3,4-
methylenedioxymethamphetamine (MDMA, "ecstasy") users. Psychopharmacology 2011; 217(4): 475-84.
38. Zhou JY, Tang XD, Huang LL, Zhong ZQ, Lei F, Zhou D. The acute effects of levetiracetam on nocturnal sleep and daytime sleepiness in patients with partial epilepsy. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 2012; 19(7): 956-60.
39. Broussard JL, Chapotot F, Abraham V, et al. Sleep restriction increases free fatty acids in healthy men. Diabetologia 2015; 58(4): 791-8.
40. Christensen JAE, Jennum P, Koch H, et al. Sleep stability and transitions in patients with idiopathic REM sleep behavior disorder and patients with Parkinson's disease. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2016; 127(1): 537-43.
41. Reinhard MA, Regen W, Baglioni C, et al. The relationship between brain morphology and polysomnography in healthy good sleepers. PloS one 2014; 9(10): e109336.
42. Vandekerckhove M, Kestemont J, Weiss R, et al. Experiential versus analytical emotion regulation and sleep: breaking the link between negative events and sleep disturbance. Emotion (Washington, DC) 2012; 12(6): 1415-21.
43. Jaimchariyatam N, Rodriguez CL, Budur K. Sleep-related cortical arousals in adult subjects with negative polysomnography. Sleep \& breathing = Schlaf \& Atmung 2015; 19(3): 989-96.
44. Mellman TA, Kobayashi I, Lavela J, Wilson B, Hall Brown TS. A relationship between REM sleep measures and the duration of posttraumatic stress disorder in a young adult urban minority population. Sleep 2014; 37(8): 1321-6.
45. Liu H, Wang D, Li Y, et al. Examination of daytime sleepiness and cognitive performance testing in patients with primary insomnia. PloS one 2014; 9(6): e100965.
46. Cervena K, Espa F, Perogamvros L, Perrig S, Merica H, Ibanez V. Spectral analysis of the sleep onset period in primary insomnia. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2014; 125(5): 979-87.
47. Zhang Z, Khatami R. Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study. The European journal of neuroscience 2014; 40(9): 3396-404.
48. Zinkhan M, Berger K, Hense S, et al. Agreement of different methods for assessing sleep characteristics: a comparison of two actigraphs, wrist and hip placement, and self-report with polysomnography. Sleep medicine 2014; 15(9): 1107-14.
49. Bumb JM, Schilling C, Enning F, et al. Pineal gland volume in primary insomnia and healthy controls: a magnetic resonance imaging study. Journal of sleep research 2014; 23(3): 274-80.
50. Mazzotti DR, Guindalini C, Moraes WA, et al. Human longevity is associated with regular sleep patterns, maintenance of slow wave sleep, and favorable lipid profile. Front Aging Neurosci 2014; 6: 134.
51. Krishnan P, Sinha S, Taly AB, Ramachandraiah CT, Rao S, Satishchandra P. Altered polysomnographic profile in juvenile myoclonic epilepsy. Epilepsy research 2014; 108(3): 459-67.
52. Lafortune M, Gagnon JF, Martin N, et al. Sleep spindles and rapid eye movement sleep as predictors of next morning cognitive performance in healthy middle-aged and older participants. Journal of sleep research 2014; 23(2): 159-67.
53. Brayet P, Petit D, Frauscher B, et al. Quantitative EEG of Rapid-Eye-Movement Sleep: A Marker of Amnestic Mild Cognitive Impairment. Clin EEG Neurosci 2016; 47(2): 134-41.
54. Hao YL, Zhang B, Jia FJ, et al. A three-phase epidemiological study of short and long sleepers in a middleaged Chinese population: prevalence and characteristics. Brazilian journal of medical and biological research $=$ Revista brasileira de pesquisas medicas e biologicas 2014; 47(2): 157-65.
55. dos Santos DF, Pedroso JL, Braga-Neto P, et al. Excessive fragmentary myoclonus in Machado-Joseph disease. Sleep medicine 2014; 15(3): 355-8.
56. Briancon-Marjollet A, Henri M, Pepin JL, Lemarie E, Levy P, Tamisier R. Altered in vitro endothelial repair and monocyte migration in obstructive sleep apnea: implication of VEGF and CRP. Sleep 2014; 37(11): 182532.
57. Ellis JG, Perlis ML, Bastien CH, Gardani M, Espie CA. The natural history of insomnia: acute insomnia and first-onset depression. Sleep 2014; 37(1): 97-106.
58. Da Woon J, Su Hwan H, Hee Nam Y, Lee YJ, Do-Un J, Kwang Suk P. Nocturnal awakening and sleep efficiency estimation using unobtrusively measured ballistocardiogram. IEEE transactions on bio-medical engineering 2014; 61(1): 131-8.
59. Lorenz RA, Budhathoki CB, Kalra GK, Richards KC. The relationship between sleep and physical function in community-dwelling adults: a pilot study. Fam Community Health 2014; 37(4): 298-306.
60. Meng J, Xuan J, Qiao X, et al. Assessment of sleep impairment in persistent allergic rhinitis patients using polysomnography. International archives of allergy and immunology 2011; 155(1): 57-62.
61. Joo EY, Kim HJ, Lim YH, Koo DL, Hong SB. Altered cortical excitability in patients with untreated obstructive sleep apnea syndrome. Sleep medicine 2010; 11(9): 857-61.
62. Iranzo A, Isetta V, Molinuevo JL, et al. Electroencephalographic slowing heralds mild cognitive impairment in idiopathic REM sleep behavior disorder. Sleep medicine 2010; 11(6): 534-9.
63. Steier J, Jolley CJ, Seymour J, et al. Increased load on the respiratory muscles in obstructive sleep apnea. Respiratory physiology \& neurobiology 2010; 171(1): 54-60.
64. Calvin AD, Somers VK, Steensma DP, et al. Advanced heart failure and nocturnal hypoxaemia due to central sleep apnoea are associated with increased serum erythropoietin. European journal of heart failure 2010; 12(4): 354-9.
65. McCann UD, Sgambati FP, Schwartz AR, Ricaurte GA. Sleep apnea in young abstinent recreational MDMA ("ecstasy") consumers. Neurology 2009; 73(23): 2011-7.
66. Lederer DJ, Jelic S, Basner RC, Ishizaka A, Bhattacharya J. Circulating KL-6, a biomarker of lung injury, in obstructive sleep apnoea. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology 2009; 33(4): 793-6.
67. Moser D, Anderer P, Gruber G, et al. Sleep classification according to AASM and Rechtschaffen \& Kales: effects on sleep scoring parameters. Sleep 2009; 32(2): 139-49.
68. Ferri R, Gschliesser V, Frauscher B, Poewe W, Hogl B. Periodic leg movements during sleep and periodic limb movement disorder in patients presenting with unexplained insomnia. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2009; 120(2): 257-63.
69. Spiesshofer J, Fox H, Lehmann R, et al. Heterogenous haemodynamic effects of adaptive servoventilation therapy in sleeping patients with heart failure and Cheyne-Stokes respiration compared to healthy volunteers. Heart and vessels 2016; 31(7): 1117-30.
70. Zhang H, Ye JY, Hua L, et al. Inhomogeneous neuromuscular injury of the genioglossus muscle in subjects with obstructive sleep apnea. Sleep \& breathing = Schlaf \& Atmung 2015; 19(2): 539-45.
71. Qu Y, Ye JY, Han DM, et al. Esophageal Functional Changes in Obstructive Sleep Apnea/Hypopnea Syndrome and Their Impact on Laryngopharyngeal Reflux Disease. Chinese medical journal 2015; 128(16): 2162-7.
72. Chowdhuri S, Pranathiageswaran S, Franco-Elizondo R, et al. Effect of age on long-term facilitation and chemosensitivity during NREM sleep. Journal of applied physiology (Bethesda, Md : 1985) 2015; 119(10): 1088-
73.
74. Orr WC, Goodrich S, Estep ME, Shepherd K. The relationship between complaints of night-time heartburn and sleep-related gastroesophageal reflux. Diseases of the esophagus: official journal of the International Society for Diseases of the Esophagus 2014; 27(4): 303-10.
75. Uygunoglu U, Benbir G, Saip S, Kaynak H, Siva A. A polysomnographic and clinical study of sleep disorders in patients with Behcet and neuro-Behcet syndrome. European neurology 2014; 71(3-4): 115-9.
76. Sasai T, Matsuura M, Inoue Y. Electroencephalographic findings related with mild cognitive impairment in idiopathic rapid eye movement sleep behavior disorder. Sleep 2013; 36(12): 1893-9.
77. Mork PJ, Nilsson J, Loras HW, Riva R, Lundberg U, Westgaard RH. Heart rate variability in fibromyalgia patients and healthy controls during non-REM and REM sleep: a case-control study. Scandinavian journal of rheumatology 2013; 42(6): 505-8.
78. Zavalko IM, Rasskazova EI, Gordeev SA, Palatov S, Kovrov GV. [Effects of long-term isolation and anticipation of significant event on sleep: results of the project "Mars-520"]. Fiziologiia cheloveka 2013; 39(6): 4552.
79. Jung DW, Hwang SH, Chung GS, Lee YJ, Jeong DU, Park KS. Estimation of sleep onset latency based on the blood pressure regulatory reflex mechanism. IEEE journal of biomedical and health informatics 2013; 17(3): 534-44.
80. Rauchs G, Piolino P, Bertran F, et al. Retrieval of Recent Autobiographical Memories is Associated with Slow-Wave Sleep in Early AD. Frontiers in behavioral neuroscience 2013; 7: 114.
81. Videnovic A, Marlin C, Alibiglou L, Planetta PJ, Vaillancourt DE, Mackinnon CD. Increased REM sleep without atonia in Parkinson disease with freezing of gait. Neurology 2013; 81(12): 1030-5.
82. Cheng P, M DC, Chen CF, Hoffmann RF, Armitage R, Deldin PJ. Sleep-disordered breathing in major depressive disorder. Journal of sleep research 2013; 22(4): 459-62.
83. Della Marca G, Sancricca C, Losurdo A, et al. Sleep disordered breathing in a cohort of patients with sporadic inclusion body myositis. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2013; 124(8): 1615-21.
84. Benbir G, Kutlu A, Gozubatik-Celik G, Karadeniz D. CAP characteristics differ in patients with arousal parasomnias and frontal and temporal epilepsies. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society 2013; 30(4): 396-402.
85. Joo EY, Jeon S, Kim ST, Lee JM, Hong SB. Localized cortical thinning in patients with obstructive sleep apnea syndrome. Sleep 2013; 36(8): 1153-62.
86. D'Rozario AL, Kim JW, Wong KK, et al. A new EEG biomarker of neurobehavioural impairment and sleepiness in sleep apnea patients and controls during extended wakefulness. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2013; 124(8): 1605-14.
87. Vollono C, Gnoni V, Testani E, et al. Heart rate variability in sleep-related migraine without aura. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine 2013; 9(7): 70714.
88. Robey E, Dawson B, Halson S, et al. Effect of evening postexercise cold water immersion on subsequent sleep. Medicine and science in sports and exercise 2013; 45(7): 1394-402.
89. Bruno RM, Rossi L, Fabbrini M, et al. Renal vasodilating capacity and endothelial function are impaired in patients with obstructive sleep apnea syndrome and no traditional cardiovascular risk factors. Journal of hypertension 2013; 31(7): 1456-64; discussion 64.
90. Opie GM, Catcheside PG, Usmani ZA, Ridding MC, Semmler JG. Motor cortex plasticity induced by theta burst stimulation is impaired in patients with obstructive sleep apnoea. The European journal of neuroscience 2013; 37(11): 1844-52.
91. Wong SN, Halaki M, Chow CM. The effects of moderate to vigorous aerobic exercise on the sleep need of sedentary young adults. Journal of sports sciences 2013; 31(4): 381-6.
92. Sorensen GL, Knudsen S, Petersen ER, et al. Attenuated heart rate response is associated with hypocretin deficiency in patients with narcolepsy. Sleep 2013; 36(1): 91-8.
93. Shaikh ZF, Jaye J, Ward N, et al. Patent foramen ovale in severe obstructive sleep apnea: clinical features and effects of closure. Chest 2013; 143(1): 56-63.
94. Garcia-Lorenzo D, Longo-Dos Santos C, Ewenczyk C, et al. The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson's disease. Brain : a journal of neurology 2013; 136(Pt 7): 2120-9.
95. Perin C, Fagondes SC, Casarotto FC, Pinotti AF, Menna Barreto SS, Dalcin Pde T. Sleep findings and predictors of sleep desaturation in adult cystic fibrosis patients. Sleep \& breathing $=$ Schlaf \& Atmung 2012; 16(4): 1041-8.
96. Huang L, Zhou J, Li Z, Lei F, Tang X. Sleep perception and the multiple sleep latency test in patients with primary insomnia. Journal of sleep research 2012; 21(6): 684-92.
97. Wienecke M, Werth E, Poryazova R, et al. Progressive dopamine and hypocretin deficiencies in Parkinson's disease: is there an impact on sleep and wakefulness? Journal of sleep research 2012; 21(6): 710-7.
98. Imbach LL, Werth E, Kallweit U, Sarnthein J, Scammell TE, Baumann CR. Inter-hemispheric oscillations in human sleep. PloS one 2012; 7(11): e48660.
99. Poirrier AL, Pire S, Raskin S, Limme M, Poirrier R. Contribution of postero-anterior cephalometry in obstructive sleep apnea. The Laryngoscope 2012; 122(10): 2350-4.
100. Ferri R, Fulda S, Cosentino FI, Pizza F, Plazzi G. A preliminary quantitative analysis of REM sleep chin EMG in Parkinson's disease with or without REM sleep behavior disorder. Sleep medicine 2012; 13(6): 707-13. 100. Tascilar NF, Tekin NS, Ankarali H, et al. Sleep disorders in Behcet's disease, and their relationship with fatigue and quality of life. Journal of sleep research 2012; 21(3): 281-8.
101. Sorensen GL, Kempfner J, Zoetmulder M, Sorensen HB, Jennum P. Attenuated heart rate response in REM sleep behavior disorder and Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society 2012; 27(7): 888-94.
102. King J, Kupferthaler A, Frauscher B, et al. Measurement of endogenous acetone and isoprene in exhaled breath during sleep. Physiol Meas 2012; 33(3): 413-28.
103. Benbir G, Karadeniz D. Periodic leg movements in sleep in patients with supratentorial cerebral infarction. Acta neurologica Belgica 2012; 112(1): 27-32.
104. Scatena M, Dittoni S, Maviglia R, et al. An integrated video-analysis software system designed for movement detection and sleep analysis. Validation of a tool for the behavioural study of sleep. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2012; 123(2): 31823.
105. Piano C, Losurdo A, Della Marca G, et al. Polysomnographic Findings and Clinical Correlates in Huntington Disease: A Cross-Sectional Cohort Study. Sleep 2015; 38(9): 1489-95.
106. Gracitelli CP, Duque-Chica GL, Roizenblatt M, et al. Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma. Ophthalmology 2015; 122(6): 1139-48.
107. Chen WJ, Liaw SF, Lin CC, Chiu CH, Lin MW, Chang FT. Effect of Nasal CPAP on SIRT1 and Endothelial Function in Obstructive Sleep Apnea Syndrome. Lung 2015; 193(6): 1037-45.
108. Gunbey E, Guzel A, Karli R, Unal R. The relationships between the clinical and polysomnographic findings and the olfactory function in patients with obstructive sleep apnea syndrome. Sleep \& breathing $=$ Schlaf \& Atmung 2015; 19(4): 1301-7.
109. Pont-Sunyer C, Iranzo A, Gaig C, et al. Sleep Disorders in Parkinsonian and Nonparkinsonian LRRK2 Mutation Carriers. PloS one 2015; 10(7): e0132368.
110. Chen X, Zhang R, Xiao Y, Dong J, Niu X, Kong W. Reliability and Validity of the Beijing Version of the Montreal Cognitive Assessment in the Evaluation of Cognitive Function of Adult Patients with OSAHS. PloS one 2015; 10(7): e0132361.
111. Dang-Vu TT, Salimi A, Boucetta S, et al. Sleep spindles predict stress-related increases in sleep disturbances. Frontiers in human neuroscience 2015; 9: 68.
112. Neutel D, Tchikviladze M, Charles P, et al. Nocturnal agitation in Huntington disease is caused by arousalrelated abnormal movements rather than by rapid eye movement sleep behavior disorder. Sleep medicine 2015; 16(6): 754-9.
113. Arnulf I, Neutel D, Herlin B, et al. Sleepiness in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease. Sleep 2015; 38(10): 1529-35.
114. Margis R, Schonwald SV, Carvalho DZ, Gerhardt GJ, Rieder CR. NREM sleep alpha and sigma activity in Parkinson's disease: evidence for conflicting electrophysiological activity? Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2015; 126(5): 951-8.
115. Lin YH, Jen CH, Yang CM. Information processing during sleep and stress-related sleep vulnerability. Psychiatry and clinical neurosciences 2015; 69(2): 84-92.
116. Shin M, Swan P, Chow CM. The validity of Actiwatch2 and SenseWear armband compared against polysomnography at different ambient temperature conditions. Sleep science (Sao Paulo, Brazil) 2015; 8(1): 9-15.
117. Koyama T, Sato S, Kanbayashi T, et al. Apnea during Cheyne-Stokes-like breathing detected by a piezoelectric sensor for screening of sleep disordered breathing. Sleep and Biological Rhythms 2015; 13(1): 57-67.
118. Mariotti P, Quaranta D, Di Giacopo R, et al. Rapid eye movement sleep behavior disorder: a window on the emotional world of Parkinson disease. Sleep 2015; 38(2): 287-94.
119. Bioulac S, Chaufton C, Taillard J, et al. Excessive daytime sleepiness in adult patients with ADHD as measured by the Maintenance of Wakefulness Test, an electrophysiologic measure. The Journal of clinical psychiatry 2015; 76(7): 943-8.
120. Baril AA, Gagnon K, Arbour C, et al. Regional Cerebral Blood Flow during Wakeful Rest in Older Subjects with Mild to Severe Obstructive Sleep Apnea. Sleep 2015; 38(9): 1439-49.
121. Djonlagic I, Guo M, Matteis P, Carusona A, Stickgold R, Malhotra A. First night of CPAP: impact on memory consolidation attention and subjective experience. Sleep medicine 2015; 16(6): 697-702.
122. Fogel SM, Ray LB, Binnie L, Owen AM. How to become an expert: A new perspective on the role of sleep in the mastery of procedural skills. Neurobiol Learn Mem 2015; 125: 236-48.
123. Goder R, Graf A, Ballhausen F, et al. Impairment of sleep-related memory consolidation in schizophrenia: relevance of sleep spindles? Sleep medicine 2015; 16(5): 564-9.
124. van Gilst MM, van Mierlo P, Bloem BR, Overeem S. Quantitative Motor Performance and Sleep Benefit in Parkinson Disease. Sleep 2015; 38(10): 1567-73.
125. Lin CC, Liaw SF, Chiu CH, Chen WJ, Lin MW, Chang FT. Effects of nasal CPAP on exhaled SIRT1 and tumor necrosis factor-alpha in patients with obstructive sleep apnea. Respiratory physiology \& neurobiology 2016;
228: 39-46.
126. Eltawdy M, Rabah A, Nada M, Refaat R, Afifi L. Sleep disorders in chronic kidney disease patients. Egyptian Journal of Neurology, Psychiatry and Neurosurgery 2016; 53(1): 48-53.
127. Chaparro-Vargas R, Schilling C, Schredl M, Cvetkovic D. Sleep electroencephalography and heart rate variability interdependence amongst healthy subjects and insomnia/schizophrenia patients. Medical \& biological engineering \& computing 2016; 54(1): 77-91.
128. Arnaldi D, Latimier A, Leu-Semenescu S, Vidailhet M, Arnulf I. Loss of REM sleep features across nighttime in REM sleep behavior disorder. Sleep medicine 2016; 17: 134-7.
129. Liao H, Zhao L, Liu K, Chen X. Investigation of the relationship between arterial stiffness and sleep architecture in patients with essential hypertension. Clinical and experimental hypertension (New York, NY: 1993) 2016; 38(1): 113-8.
130. Bagai K, Peltier AC, Malow BA, et al. Objective Sleep Assessments in Patients with Postural Tachycardia Syndrome using Overnight Polysomnograms. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine 2016; 12(5): 727-33.
131. Zhao D, Li Y, Xian J, et al. Relationship of genioglossus muscle activation and severity of obstructive sleep apnea and hypopnea syndrome among Chinese patients. Acta oto-laryngologica 2016; 136(8): 819-25.
132. Lo JC, Sim SK, Chee MW. Sleep reduces false memory in healthy older adults. Sleep 2014; 37(4): 665-71,

71a.
133. Ooms S, Overeem S, Besse K, Rikkert MO, Verbeek M, Claassen JA. Effect of 1 night of total sleep deprivation on cerebrospinal fluid beta-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol 2014; 71(8): 971-7.
134. Deliens G, Leproult R, Neu D, Peigneux P. Rapid eye movement and non-rapid eye movement sleep contributions in memory consolidation and resistance to retroactive interference for verbal material. Sleep 2013; 36(12): 1875-83.
135. Mascetti L, Foret A, Schrouff J, et al. Concurrent synaptic and systems memory consolidation during sleep. The Journal of neuroscience : the official journal of the Society for Neuroscience 2013; 33(24): 10182-90.
136. Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Annals of internal medicine 2012; 157(8): 549-57.
137. Booth JN, Bromley LE, Darukhanavala AP, Whitmore HR, Imperial JG, Penev PD. Reduced physical activity in adults at risk for type 2 diabetes who curtail their sleep. Obesity 2012; 20(2): 278-84.
138. Dube J, Lafortune M, Bedetti C, et al. Cortical thinning explains changes in sleep slow waves during adulthood. The Journal of neuroscience : the official journal of the Society for Neuroscience 2015; 35(20): 7795807.
139. Ujma PP, Bodizs R, Gombos F, et al. Nap sleep spindle correlates of intelligence. Sci Rep 2015; 5: 17159.
140. Zanini MA, Castro J, Cunha GR, et al. Abnormalities in sleep patterns in individuals at risk for psychosis and bipolar disorder. Schizophrenia research 2015; 169(1-3): 262-7.
141. Hoshikawa M, Uchida S, Osawa T, et al. Effects of Five Nights under Normobaric Hypoxia on Sleep Quality. Medicine and science in sports and exercise 2015; 47(7): 1512-8.
142. Smith MG, Croy I, Hammar O, Persson Waye K. Vibration from freight trains fragments sleep: A polysomnographic study. Sci Rep 2016; 6: 24717.
143. Bouazizi E, Naeck R, D'Amore D, et al. Mathematical modelling of sleep fragmentation diagnosis. Biomedical Signal Processing and Control 2016; 24: 83-92.
144. Dubrovsky B, Raphael KG, Lavigne GJ, et al. Polysomnographic investigation of sleep and respiratory parameters in women with temporomandibular pain disorders. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine 2014; 10(2): 195-201.
145. Glos M, Fietze I, Blau A, Baumann G, Penzel T. Cardiac autonomic modulation and sleepiness: physiological consequences of sleep deprivation due to 40 h of prolonged wakefulness. Physiology \& behavior 2014; 125: 45-53.
146. Wilhelm I, Kurth S, Ringli M, et al. Sleep slow-wave activity reveals developmental changes in experience-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience 2014; 34(37): 12568-75.
147. Hachul H, Andersen ML, Tufik S. Sleep quality based on the use of different sanitary pads during menstruation. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics 2011; 115(1): 57-60.
148. Biermasz NR, Joustra SD, Donga E, et al. Patients previously treated for nonfunctioning pituitary macroadenomas have disturbed sleep characteristics, circadian movement rhythm, and subjective sleep quality. The Journal of clinical endocrinology and metabolism 2011; 96(5): 1524-32.
149. Donga E, van Dijk M, van Dijk JG, et al. A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. The Journal of clinical endocrinology and metabolism 2010; 95(6): 2963-8.
150. Schytz HW, Jensen BE, Jennum P, Selb J, Boas DA, Ashina M. Low-frequency oscillations and vasoreactivity of cortical vessels in obstructive sleep apnea during wakefulness: a near infrared spectroscopy study. Sleep medicine 2013; 14(5): 416-21.
151. Garcia CE, Drager LF, Krieger EM, et al. Arousals are frequent and associated with exacerbated blood pressure response in patients with primary hypertension. American journal of hypertension 2013; 26(5): 617-23.
152. Abe S, Gagnon JF, Montplaisir JY, et al. Sleep bruxism and oromandibular myoclonus in rapid eye movement sleep behavior disorder: a preliminary report. Sleep medicine 2013; 14(10): 1024-30.
153. Wuyts J, De Valck E, Vandekerckhove M, et al. Effects of pre-sleep simulated on-call instructions on subsequent sleep. Biol Psychol 2012; 91(3): 383-8.
154. Montgomery-Downs HE, Insana SP, Bond JA. Movement toward a novel activity monitoring device. Sleep \& breathing $=$ Schlaf \& Atmung 2012; 16(3): 913-7.
155. Biard K, Douglass AB, De Koninck J. The effects of galantamine and buspirone on sleep structure: Implications for understanding sleep abnormalities in major depression. Journal of psychopharmacology 2015; 29(10): 1106-11.
156. Guan W, Ga Q, Li R, et al. Sleep disturbances in long-term immigrants with chronic mountain sickness: a comparison with healthy immigrants at high altitude. Respiratory physiology \& neurobiology 2015; 206: 4-10. 157. Cepeda FX, Toschi-Dias E, Maki-Nunes C, et al. Obstructive Sleep Apnea Impairs Postexercise Sympathovagal Balance in Patients with Metabolic Syndrome. Sleep 2015; 38(7): 1059-66.
158. Hudson JD, Guptill JT, Byrnes W, Yates SL, Williams P, D'Cruz O. Assessment of the effects of lacosamide on sleep parameters in healthy subjects. Seizure : the journal of the British Epilepsy Association 2015; 25: 155-9.
159. Ko CH, Fang YW, Tsai LL, Hsieh S. The effect of experimental sleep fragmentation on error monitoring. Biol Psychol 2015; 104: 163-72.
160. Barut BO, Tascilar N, Varo A. Sleep Disturbances in Essential Tremor and Parkinson Disease: A Polysomnographic Study. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine 2015; 11(6): 655-62.
161. Varga AW, Ducca EL, Kishi A, et al. Effects of aging on slow-wave sleep dynamics and human spatial navigational memory consolidation. Neurobiology of aging 2016; 42: 142-9.
162. Landry S, Anderson C, Andrewartha P, Sasse A, Conduit R. The impact of obstructive sleep apnea on motor skill acquisition and consolidation. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine 2014; 10(5): 491-6.
163. Rao V, Bergey A, Hill H, Efron D, McCann U. Sleep disturbance after mild traumatic brain injury: indicator of injury? The Journal of neuropsychiatry and clinical neurosciences 2011; 23(2): 201-5.
164. Pamidi S, Wroblewski K, Broussard J, et al. Obstructive sleep apnea in young lean men: impact on insulin sensitivity and secretion. Diabetes care 2012; 35(11): 2384-9.
165. Simen AA, Ma J, Svetnik V, et al. Efavirenz modulation of sleep spindles and sleep spectral profile. Journal of sleep research 2015; 24(1): 66-73.
166. Poryazova R, Huber R, Khatami R, et al. Topographic sleep EEG changes in the acute and chronic stage of hemispheric stroke. Journal of sleep research 2015; 24(1): 54-65.
167. Lustenberger C, Wehrle F, Tushaus L, Achermann P, Huber R. The Multidimensional Aspects of Sleep Spindles and Their Relationship to Word-Pair Memory Consolidation. Sleep 2015; 38(7): 1093-103.
168. Landry S, O'Driscoll DM, Hamilton GS, Conduit R. Overnight Motor Skill Learning Outcomes in Obstructive Sleep Apnea: Effect of Continuous Positive Airway Pressure. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine 2016; 12(5): 681-8.
169. Buchmann A, Kurth S, Ringli M, Geiger A, Jenni OG, Huber R. Anatomical markers of sleep slow wave activity derived from structural magnetic resonance images. Journal of sleep research 2011; 20(4): 506-13.
170. Chennaoui M, Sauvet F, Drogou C, et al. Effect of one night of sleep loss on changes in tumor necrosis factor alpha (TNF-alpha) levels in healthy men. Cytokine 2011; 56(2): 318-24.
171. Cho JR, Joo EY, Koo DL, Hong SB. Let there be no light: the effect of bedside light on sleep quality and background electroencephalographic rhythms. Sleep medicine 2013; 14(12): 1422-5.
172. Westerberg CE, Mander BA, Florczak SM, et al. Concurrent impairments in sleep and memory in amnestic mild cognitive impairment. Journal of the International Neuropsychological Society : JINS 2012; 18(3): 490-500.

